
MATLAB® Coder™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Coder™ User’s Guide

© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

About MATLAB Coder

1
Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
When to Use MATLAB Coder . 1-3
Code Generation for Embedded Software Applications . . . 1-3
Code Generation for Fixed-Point Algorithms 1-4

Code Generation Workflow . 1-5
See Also . 1-5

Design Considerations for C/C++ Code
Generation

2
When to Generate Code from MATLAB Algorithms . . . 2-2
When Not to Generate Code from MATLAB Algorithms . . 2-2

Which Code Generation Feature to Use 2-4

Prerequisites for C/C++ Code Generation from
MATLAB . 2-5

MATLAB Code Design Considerations for Code
Generation . 2-6
See Also . 2-7

Expected Differences in Behavior After Compiling
MATLAB Code . 2-8

v

Why Are There Differences? . 2-8
Character Size . 2-8
Order of Evaluation in Expressions 2-8
Termination Behavior . 2-9
Size of Variable-Size N-D Arrays . 2-9
Size of Empty Arrays . 2-10
Floating-Point Numerical Results . 2-10
NaN and Infinity Patterns . 2-11
Code Generation Target . 2-11
MATLAB Class Initial Values . 2-11
Variable-Size Support for Code Generation 2-11

MATLAB Language Features Supported for C/C++ Code
Generation . 2-12
MATLAB Language Features Not Supported for C/C++
Code Generation . 2-13

System Objects Supported for Code Generation

3
System Objects Supported for Code Generation 3-2
Code Generation for System Objects 3-2
Computer Vision System Toolbox System Objects 3-2
Communications System Toolbox System Objects 3-7
DSP System Toolbox System Objects 3-13

Functions Supported for Code Generation

4
Functions Supported for Code Generation —
Alphabetical List . 4-2

Functions Supported for Code Generation —
Categorical List . 4-66
Aerospace Toolbox Functions . 4-67
Arithmetic Operator Functions . 4-67

vi Contents

Bit-Wise Operation Functions . 4-68
Casting Functions . 4-68
Communications System Toolbox Functions 4-69
Complex Number Functions . 4-69
Computer Vision System Toolbox Functions 4-70
Data Type Functions . 4-71
Derivative and Integral Functions . 4-71
Discrete Math Functions . 4-72
Error Handling Functions . 4-72
Exponential Functions . 4-72
Filtering and Convolution Functions 4-73
Fixed-Point Toolbox Functions . 4-73
Histogram Functions . 4-82
Image Processing Toolbox Functions 4-82
Input and Output Functions . 4-83
Interpolation and Computational Geometry 4-83
Linear Algebra . 4-83
Logical Operator Functions . 4-84
MATLAB Compiler Functions . 4-84
Matrix and Array Functions . 4-85
Nonlinear Numerical Methods . 4-89
Polynomial Functions . 4-89
Relational Operator Functions . 4-89
Rounding and Remainder Functions 4-90
Set Functions . 4-90
Signal Processing Functions in MATLAB 4-91
Signal Processing Toolbox Functions 4-91
Special Values . 4-96
Specialized Math . 4-96
Statistical Functions . 4-97
String Functions . 4-97
Structure Functions . 4-98
Trigonometric Functions . 4-98

Defining MATLAB Variables for C/C++ Code
Generation

5
Variables Definition for Code Generation 5-2

vii

Best Practices for Defining Variables for C/C++ Code
Generation . 5-3
Define Variables By Assignment Before Using Them 5-3
Use Caution When Reassigning Variables 5-6
Use Type Cast Operators in Variable Definitions 5-6
Define Matrices Before Assigning Indexed Variables 5-6

Eliminate Redundant Copies of Variables in Generated
Code . 5-7
When Redundant Copies Occur . 5-7
How to Eliminate Redundant Copies by Defining
Uninitialized Variables . 5-7

Defining Uninitialized Variables . 5-8

Reassignment of Variable Properties 5-9

Define and Initialize Persistent Variables 5-10

Reuse the Same Variable with Different Properties . . . 5-11
When You Can Reuse the Same Variable with Different
Properties . 5-11

When You Cannot Reuse Variables 5-12
Limitations of Variable Reuse . 5-14

Avoid Overflows in for-Loops . 5-16

Supported Variable Types . 5-18

Defining Data for Code Generation

6
Data Definition for Code Generation 6-2

Code Generation for Complex Data 6-4
Restrictions When Defining Complex Variables 6-4
Expressions Containing Complex Operands Yield Complex
Results . 6-5

viii Contents

Code Generation for Characters . 6-6

Code Generation for Variable-Size Data

7
What Is Variable-Size Data? . 7-2

Variable-Size Data Definition for Code Generation . . . 7-3

Bounded Versus Unbounded Variable-Size Data 7-4

Control Memory Allocation of Variable-Size Data 7-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 7-6
Fixing Upper Bounds Errors . 7-6
Specifying Upper Bounds for Variable-Size Data 7-6

Variable-Size Data in Code Generation Reports 7-10
What Reports Tell You About Size . 7-10
How Size Appears in Code Generation Reports 7-11
How to Generate a Code Generation Report 7-11

Define Variable-Size Data for Code Generation 7-12
When to Define Variable-Size Data Explicitly 7-12
Using a Matrix Constructor with Nonconstant
Dimensions . 7-13

Inferring Variable Size from Multiple Assignments 7-13
Defining Variable-Size Data Explicitly Using
coder.varsize . 7-14

C Code Interface for Arrays . 7-19
C Code Interface for Statically Allocated Arrays 7-19
C Code Interface for Dynamically Allocated Arrays 7-20
Utility Functions for Creating emxArray Data
Structures . 7-21

ix

Troubleshooting Issues with Variable-Size Data 7-23
Diagnosing and Fixing Size Mismatch Errors 7-23
Diagnosing and Fixing Errors in Detecting Upper
Bounds . 7-25

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation . 7-27
Incompatibility with MATLAB for Scalar Expansion 7-27
Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays . 7-29

Incompatibility with MATLAB in Determining Size of
Empty Arrays . 7-30

Incompatibility with MATLAB in Vector-Vector
Indexing . 7-31

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation 7-32

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 7-33

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation 7-34
Common Restrictions . 7-34
Toolbox Functions with Variable Sizing Restrictions 7-35

Code Generation for MATLAB Structures

8
Structure Definition for Code Generation 8-2

Structure Operations Allowed for Code Generation . . . 8-3

Define Scalar Structures for Code Generation 8-4
Restrictions When Using struct . 8-4
Restrictions When Defining Scalar Structures by
Assignment . 8-4

Adding Fields in Consistent Order on Each Control Flow
Path . 8-4

Restriction on Adding New Fields After First Use 8-5

x Contents

Define Arrays of Structures for Code Generation 8-7
Ensuring Consistency of Fields . 8-7
Using repmat to Define an Array of Structures with
Consistent Field Properties . 8-7

Defining an Array of Structures Using Concatenation 8-8

Make Structures Persistent . 8-9

Index Substructures and Fields . 8-10

Assign Values to Structures and Fields 8-12

Pass Large Structures as Input Parameters 8-13

Code Generation for Enumerated Data

9
Enumerated Data Definition for Code Generation 9-2

Enumerated Types Supported for Code Generation . . . 9-3
Enumerated Type Based on int32 . 9-3

When to Use Enumerated Data for Code Generation . . 9-5

Generate Code for Enumerated Data from MATLAB
Algorithms . 9-6
How to Generate Code for Enumerated Data 9-6

Define Enumerated Data for Code Generation 9-8
Naming Enumerated Types for Code Generation 9-9

Instantiate Enumerated Types for Code Generation . . 9-10

Operations on Enumerated Data Allowed for Code
Generation . 9-11
Assignment Operator, = . 9-11

xi

Relational Operators, < > <= >= == ~= 9-11
Cast Operation . 9-12
Indexing Operation . 9-12
Control Flow Statements: if, switch, while 9-13

Include Enumerated Data in Control Flow
Statements . 9-14
if Statement with Enumerated Data Types 9-14
switch Statement with Enumerated Data Types 9-15
while Statement with Enumerated Data Types 9-18

Customize Enumerated Types Based on int32 9-20
About Customizing Enumerated Types 9-20
Specify a Default Enumerated Value 9-22
Specify a Header File . 9-23

Control Names of Enumerated Type Values in
Generated Code . 9-26

Change and Reload Enumerated Data Types 9-28

Restrictions on Use of Enumerated Data in
for-Loops . 9-29

Toolbox Functions That Support Enumerated Types for
Code Generation . 9-30

Code Generation for MATLAB Classes

10
MATLAB Classes Definition for Code Generation 10-2
Language Limitations . 10-2
Code Generation Features Not Compatible with Classes . . 10-4
Defining Class Properties for Code Generation 10-5
Calls to Base Class Constructor . 10-6

Classes That Support Code Generation 10-8

xii Contents

Memory Allocation Requirements 10-9

Generate Code for MATLAB Value Classes 10-10

Generate Code for MATLAB Handle Classes and System
Objects . 10-16

MATLAB Classes in Code Generation Reports 10-19
What Reports Tell You About Classes 10-19
How Classes Appear in Code Generation Reports 10-19
How to Generate a Code Generation Report 10-21

Troubleshooting Issues with MATLAB Classes 10-22
Class class does not have a property with name name . . . 10-22

Code Generation for Function Handles

11
Function Handles Definition for Code Generation 11-2

Define and Pass Function Handles for Code
Generation . 11-3

Function Handle Limitations for Code Generation . . . 11-5

Defining Functions for Code Generation

12
Specify Variable Numbers of Arguments 12-2

Supported Index Expressions . 12-3

xiii

Apply Operations to a Variable Number of
Arguments . 12-4
When to Force Loop Unrolling . 12-4
Using Variable Numbers of Arguments in a for-Loop 12-5

Implement Wrapper Functions . 12-7
Passing Variable Numbers of Arguments from One
Function to Another . 12-7

Pass Property/Value Pairs . 12-8

Variable Length Argument Lists for Code
Generation . 12-10

Calling Functions for Code Generation

13
Resolution of Function Calls in MATLAB Generated
Code . 13-2
Key Points About Resolving Function Calls 13-4
Compile Path Search Order . 13-4
When to Use the Code Generation Path 13-5

Resolution of Files Types on Code Generation Path . . . 13-6

Compilation Directive %#codegen 13-8

Call Local Functions . 13-9

Call Supported Toolbox Functions 13-10

Call MATLAB Functions . 13-11
Declaring MATLAB Functions as Extrinsic Functions . . . 13-12
Calling MATLAB Functions Using feval 13-16
How MATLAB Resolves Extrinsic Functions During
Simulation . 13-16

Working with mxArrays . 13-17

xiv Contents

Restrictions on Extrinsic Functions for Code Generation . . 13-19
Limit on Function Arguments . 13-19

Fixed-Point Conversion

14
Propose Fixed-Point Data Types . 14-2

Apply Fixed-Point Data Types . 14-12

Workflow for Proposing Data Types in a MATLAB
Coder Project . 14-18

Proposing Fraction Lengths . 14-19

Proposing Word Lengths . 14-20

Modify Data Type Proposal Settings 14-21

Modify Instrumentation Report Settings 14-25

View Data Type Proposals . 14-26

View Simulation Minimum and Maximum Values 14-27

Merging Instrumentation Results 14-28

Clearing Instrumentation Results 14-29

Redirecting Entry-Point Calls to MEX Function 14-30

xv

Bug Reports

15
Check Bug Reports for Issues and Fixes 15-2

Setting Up a MATLAB Coder Project

16
MATLAB Coder Project Set Up Workflow 16-2

Creating a New Project . 16-3
From the MATLAB APPS Tab . 16-3
At the Command Line . 16-3
From a MATLAB Coder Project . 16-4

Opening an Existing Project . 16-5
From the MATLAB APPS Tab . 16-5
At the Command Line . 16-5
From a MATLAB Coder Project . 16-5

Adding Files to the Project . 16-6

Specifying Properties of Primary Function Inputs in a
Project . 16-7
Why You Must Specify Input Properties 16-7
How to Specify an Input Definition in a Project 16-7

Autodefine Input Types . 16-8
How MATLAB Coder Autodefines Input Types 16-8
Prerequisites for Autodefining Input Types 16-8
How to Autodefine Input Types . 16-8

Define Input Parameters by Example in a Project 16-12
How to Define an Input Parameter by Example 16-12
Specifying Input Parameters by Example 16-13
Specifying an Enumerated Type Input Parameter by
Example . 16-15

xvi Contents

Specifying a Fixed-Point Input Parameter by Example . . . 16-17

Define or Edit Input Parameter Type in a Project 16-19
How to Define or Edit an Input Parameter Type 16-19
Specifying an Enumerated Type Input Parameter by
Type . 16-21

Specifying a Fixed-Point Input Parameter by Type 16-21
Specifying Structures . 16-23

Define Constant Input Parameters in a Project 16-30

Define Inputs Programmatically in the MATLAB
File . 16-31

Adding Global Variables in a Project 16-32

Specifying Global Variable Type and Initial Value in a
Project . 16-33
Why Specify a Type Definition for Global Variables? 16-33
How to Specify a Global Variable Type 16-33
Defining a Global Variable by Example 16-34
Defining or Editing Global Variable Type 16-35
Defining Global Variable Initial Value 16-37
Removing Global Variables . 16-39

Specify Output File Name . 16-40
Command Line Alternative . 16-40

Specify Output File Locations . 16-41
Command Line Alternative . 16-41

Selecting Output Type . 16-42
Command Line Alternative . 16-42
Changing Output Type . 16-42

xvii

Preparing MATLAB Code for C/C++ Code
Generation

17
Workflow for Preparing MATLAB Code for Code
Generation . 17-2
See Also . 17-3

Fixing Errors Detected at Design Time 17-4
See Also . 17-4

Using the Code Analyzer . 17-5

Check Code With the Code Analyzer 17-6

Check Code Using the Code Generation Readiness
Tool . 17-8
Run Code Generation Readiness Tool at the Command
Line . 17-8

Run Code Generation Readiness Tool from the Current
Folder Browser . 17-8

Run the Code Generation Readiness Tool in a Project 17-9
See Also . 17-9

Code Generation Readiness Tool . 17-10
What Information Does the Code Generation Readiness
Tool Provide? . 17-10

Summary Tab . 17-11
Code Structure Tab . 17-12
See Also . 17-15

Unable to Determine Code Generation Readiness 17-16

Generate MEX Functions Using the MATLAB Coder
Project Interface . 17-17
Project Workflow for Generating MEX Functions 17-17
Generate MEX Functions Using the Project Interface 17-17
Configure Project Settings . 17-22
Build a MATLAB Coder Project . 17-23
See Also . 17-24

xviii Contents

Generate MEX Functions at the Command Line 17-25
Command-line Workflow for Generating MEX
Functions . 17-25

Generate MEX Functions at the Command Line 17-25
Generating MEX Functions at the Command Line Using
codegen . 17-26

See Also . 17-26

Fix Errors Detected at Code Generation Time 17-27
See Also . 17-27

Design Considerations When Writing MATLAB Code
for Code Generation . 17-28
See Also . 17-29

Running MEX Functions . 17-30
Debugging MEX Functions . 17-30

Debugging Strategies . 17-31

Testing MEX Functions in MATLAB

18
Workflow for Testing MEX Functions in MATLAB 18-2
See Also . 18-2

Why Test MEX Functions in MATLAB? 18-4

Running MEX Functions . 18-5
Debugging MEX Functions . 18-5

Verify MEX Functions in a Project 18-6
Using Test Files That Call Only MATLAB Functions 18-6
Using Test Files That Call MEX Functions 18-7

Verify MEX Functions at the Command Line 18-9

xix

Debug Run-Time Errors . 18-10
Viewing Errors in the Run-Time Stack 18-10
Handling Run-Time Errors . 18-12

Generating C/C++ Code from MATLAB Code

19
Code Generation Workflow . 19-3
See Also . 19-4

C/C++ Code Generation . 19-5
Specify Custom Files to Build . 19-5

Generating C/C++ Static Libraries from MATLAB
Code . 19-7
Generate a C Static Library Using the Project Interface . . 19-7
Generate a C Static Library at the Command Line 19-10

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code . 19-11
Dynamic Libraries Generated by MATLAB Coder 19-11
Generate a C Dynamically Linked Library (DLL) Using the
Project Interface . 19-11

Generate a C Dynamic Library at the Command Line 19-13

Generating Standalone C/C++ Executables from
MATLAB Code . 19-15
Generate a C Executable Using the Project Interface 19-15
Generate a C Executable at the Command Line 19-17
Specifying main Functions for C/C++ Executables 19-19
Specify main Functions . 19-19

Build Setting Configuration . 19-21
Specify Output Type . 19-21
Specify a Language for Code Generation 19-24
Specify Output File Name . 19-25
Specify Output File Locations . 19-26
Parameter Specification Methods . 19-27

xx Contents

Specify Build Configuration Parameters 19-28

Share Build Configuration Settings 19-35
Export Settings . 19-35
Import Settings . 19-36
See Also . 19-37

Primary Function Input Specification 19-38
Why You Must Specify Input Properties 19-38
Properties to Specify . 19-38
Rules for Specifying Properties of Primary Inputs 19-42
Methods for Defining Properties of Primary Inputs 19-42
Define Input Properties by Example at the Command
Line . 19-43

Specify Constant Inputs at the Command Line 19-46
Specify Variable-Size Inputs at the Command Line 19-48

Define Input Properties Programmatically in the
MATLAB File . 19-50
How to Use assert with MATLAB Coder 19-50
Rules for Using assert Function . 19-57
Specifying General Properties of Primary Inputs 19-58
Specifying Properties of Primary Fixed-Point Inputs 19-59
Specifying Class and Size of Scalar Structure 19-59
Specifying Class and Size of Structure Array 19-60

Speed Up Compilation . 19-61
Generate Code Only . 19-61
Disable Compiler Optimization . 19-61

Code Optimization . 19-63
Unroll for-loops . 19-63
Inline Code . 19-65
Eliminate Redundant Copies of Function Inputs
(A=foo(A)) . 19-66

Rewrite Logical Array Indexing as a Loop 19-68

Paths and File Infrastructure Setup 19-69
Compile Path Search Order . 19-69
Specifying Folders to Search for Custom Code 19-69
Naming Conventions . 19-70

xxi

Generate Code for Multiple Entry-Point Functions . . . 19-75
Advantages of Generating Code for More Than One
Entry-Point Function . 19-75

Generating Code for More Than One Entry-Point Function
Using the Project Interface . 19-75

Generating Code for More Than One Entry-Point Function
at the Command Line . 19-78

How to Call an Entry-Point Function in a MEX Function . . 19-79
How to Call an Entry-Point Function in a C/C++ Library
Function from C/C++ Code . 19-80

Generate Code for Global Data . 19-81
Workflow . 19-81
Declare Global Variables . 19-81
Define Global Data . 19-82
Synchronizing Global Data with MATLAB 19-83
Limitations of Using Global Data . 19-87

Generation of Traceable Code . 19-88
About Code Traceability . 19-88
Generate Traceable Code . 19-89
Format of Traceability Tags . 19-91
Location of Comments in Generated Code 19-91
Traceability Limitations . 19-96

Generate Code for Enumerated Types 19-97

Generate Code for Variable-Size Data 19-98
Disable Support for Variable-Size Data 19-98
Control Dynamic Memory Allocation 19-99
Generating Code for MATLAB Functions with Variable-Size
Data . 19-101

Generate Code for a MATLAB Function That Expands a
Vector in a Loop . 19-103

Using Dynamic Memory Allocation for an "Atoms"
Simulation . 19-110

Code Generation for MATLAB Classes 19-117

How MATLAB Coder Partitions Generated Code 19-118
Partitioning Generated Files . 19-118

xxii Contents

How to Select the File Partitioning Method 19-118
Partitioning Generated Files with One C/C++ File Per
MATLAB File . 19-119

Generated Files and Locations . 19-124
File Partitioning and Inlining . 19-127

Customize the Post-Code-Generation Build Process . . 19-132
Workflow for Customizing Post-Code-Generation Builds . . 19-132
Build Information Object . 19-132
Build Information Functions . 19-133
Programming a Post-Code-Generation Command 19-171
Using a Post-Code-Generation Command in Your Build . . 19-171
Programming and Using a Post-Code-Generation Command
at the Command Line . 19-173

Code Generation Reports . 19-174
About Code Generation Reports . 19-174
Enable Code Generation Reports . 19-177
View Your MATLAB Code in a Report 19-178
Viewing Call Stack Information . 19-179
View Generated C/C++ Code in a Report 19-182
Viewing the Build Summary Information 19-182
View Error and Warning Messages in a Report 19-183
Viewing Variables in Your MATLAB Code 19-184
Viewing Target Build Information . 19-190
Keyboard Shortcuts for the Code Generation Report 19-191
Report Limitations . 19-191

Troubleshooting . 19-193
Run-time Stack Overflow . 19-193

Package Code For Use in Another Development
Environment . 19-194
When to Package Code . 19-194
Package Generated Code in a Project 19-194
Package Generated Code at the Command Line 19-196

xxiii

Deploying Generated Code

20
Call a C Static Library Function from C Code 20-2

Call a C/C++ Static Library Function from MATLAB
Code . 20-4

Call Generated C/C++ Functions . 20-6
Conventions for Calling Functions in Generated Code 20-6
How to Call C/C++ Functions from MATLAB Code 20-6
Calling Initialize and Terminate Functions 20-7
Calling C/C++ Functions with Multiple Outputs 20-8
Calling C/C++ Functions that Return Arrays 20-8

Use a MATLAB Coder Dynamic Library in a Simple
Microsoft Visual Studio Project 20-9

Custom C/C++ Code Integration . 20-12
About Custom C/C++ Code Integration with MATLAB
Coder . 20-12

Specifying Custom C/C++ Files in the Project Settings
Dialog Box . 20-12

Specifying Custom C/C++ Files at the Command Line 20-13
Specifying Custom C/C++ Files with Configuration
Objects . 20-13

Accelerating MATLAB Algorithms

21
Workflow for Accelerating MATLAB Algorithms 21-2
See Also . 21-3

Edge Detection on Images . 21-4

Accelerate MATLAB Algorithms . 21-11

xxiv Contents

Modifying MATLAB Code for Acceleration 21-12
How to Modify Your MATLAB Code for Acceleration 21-12
Unroll for-loops . 21-12
Inline Code . 21-14
Eliminate Redundant Copies of Function Inputs
(A=foo(A)) . 21-15

Accelerate MATLAB Algorithms with the Basic Linear
Algebra Subprograms (BLAS) Library 21-18
How MATLAB Uses the BLAS Library for MEX Code
Generation . 21-18

How to Use the BLAS Library for C/C++ Code
Generation . 21-18

When to Disable BLAS Library Support 21-19
How to Disable BLAS Library Support 21-19
Supported Compilers . 21-20

Control Run-Time Checks . 21-21
Types of Run-Time Checks . 21-21
When to Disable Run-Time Checks 21-22
How to Disable Run-Time Checks . 21-22

Acceleration of MATLAB Algorithms Using Parallel
for-loops (parfor) . 21-24
Parallel for-loops (parfor) in MEX Functions 21-24
When to Use parfor-loops . 21-25
When Not to Use parfor-loops . 21-26
Control Compilation of parfor-loops 21-26
Supported Compilers . 21-27
parfor-Loop Syntax and Restrictions 21-28
parfor Limitations . 21-29

Reduction Assignments in parfor-loops 21-34
Scalar Reduction Variables . 21-34
Multiple Reductions in a parfor-loop 21-34

Classification of Variables in parfor-loops 21-36
Overview . 21-36
Sliced Variables . 21-37
Broadcast Variables . 21-39
Reduction Variables . 21-39
Temporary Variables . 21-45

xxv

Accelerate MATLAB Algorithms That Use Parallel
for-loops (parfor) . 21-47

Accelerate MATLAB Algorithms That Use Parallel
for-loops (parfor) Specifying the Maximum Number
of Threads . 21-48

Troubleshooting parfor-loops . 21-49
What Causes Errors About the Use of Global Structures in
Parallel Regions? . 21-49

Compiler Does Not Support OpenMP 21-49

Accelerating Simulation of Bouncing Balls 21-51

Calling C/C++ Functions from Generated Code

22
MATLAB Coder Interface to C/C++ Code 22-2
How to Call C/C++ Code from Generated Code 22-2
Why Call C/C++ Functions from Generated Code? 22-2
Call External C/C++ Functions . 22-3
Pass Arguments by Reference to External C/C++
Functions . 22-3

Manipulate C Data . 22-5

Call External C/C++ Functions . 22-7
Workflow for Calling External C/C++ Functions 22-7
Best Practices for Calling C/C++ Code from Generated
Code . 22-8

Return Multiple Values from C Functions 22-9

How MATLAB Coder Infers C/C++ Data Types 22-10
Mapping MATLAB Types to C/C++ 22-10
Mapping embedded.numerictypes to C/C++ 22-11
Mapping Arrays to C/C++ . 22-12
Mapping Complex Values to C/C++ 22-12
Mapping Structures to C/C++ Structures 22-13

xxvi Contents

Mapping Strings to C/C++ . 22-14
Mapping Multiword Types to C/C++ 22-14

Examples

A
Data Management . A-2

Code Generation for Variable-Size Data A-3

Code Generation for Structures . A-4

Code Generation for Enumerated Data A-5

Code Generation for Function Handles A-6

Using Variable-Length Argument Lists A-7

Generating MEX Functions . A-8

Generating Static C/C++ Libraries A-9

Generating C/C++ Dynamic Libraries A-10

Generating C/C++ Executables . A-11

Specifying Inputs . A-12

Optimizing Generated Code . A-13

Generating Code for Variable-Size Data A-14

Calling C/C++ Code from MATLAB Code A-15

xxvii

Index

xxviii Contents

1

About MATLAB Coder

• “Product Description” on page 1-2

• “Product Overview” on page 1-3

• “Code Generation Workflow” on page 1-5

1 About MATLAB® Coder™

Product Description
Generate C and C++ code from MATLAB® code

MATLAB Coder™ generates standalone C and C++ code from MATLAB code.
The generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

Key Features

• ANSI/ISO compliant C and C++ code generation

• MEX function generation for fixed-point and floating-point math

• Project management tool for specifying entry points, input data properties,
and other code-generation configuration options

• Static or dynamic memory allocation for variable-size data

• Code generation support for many functions and System objects in
Communications System Toolbox™, DSP System Toolbox™, and Computer
Vision System Toolbox™

• Support for common MATLAB language features, including matrix
operations, subscripting, program controls statements (if, switch, for,
while), and structures

1-2

Product Overview

Product Overview

In this section...

“When to Use MATLAB® Coder™” on page 1-3

“Code Generation for Embedded Software Applications” on page 1-3

“Code Generation for Fixed-Point Algorithms” on page 1-4

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.

• Generate MEX functions from MATLAB code to:

- Accelerate your MATLAB algorithms.

- Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software
Applications
The Embedded Coder® product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize the generated code for a specific target environment.

• Enable tracing options that help you to verify the generated code.

• Generate reusable, reentrant code.

1-3

1 About MATLAB® Coder™

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Toolbox™ product, you can generate:

• MEX functions to accelerate fixed-point algorithms.

• Fixed-point code that provides a bit-wise match to MEX function results.

1-4

Code Generation Workflow

Code Generation Workflow

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Code Generation Workflow” on page 19-3

• “Workflow for Accelerating MATLAB Algorithms” on page 21-2

1-5

1 About MATLAB® Coder™

1-6

2

Design Considerations for
C/C++ Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 2-2

• “Which Code Generation Feature to Use” on page 2-4

• “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-5

• “MATLAB Code Design Considerations for Code Generation” on page 2-6

• “Expected Differences in Behavior After Compiling MATLAB Code” on
page 2-8

• “MATLAB Language Features Supported for C/C++ Code Generation” on
page 2-12

2 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded
systems allows you to perform your software design, implementation, and
testing completely within the MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation

• Generate efficient, readable, and compact C/C++ code automatically, which
eliminates the need to manually translate your MATLAB algorithms and
minimizes the risk of introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific
requirements of desktop and embedded applications, such as data type
management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

- Accelerate MATLAB algorithms in certain applications.

- Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications.
Use the recommended MathWorks® product instead.

To: Use:

Deploy an application that uses
handle graphics

MATLAB Compiler™

Use Java™ MATLAB Builder™ JA

Use toolbox functions that do not
support code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI
applications on a supported
MATLAB host

MATLAB Compiler

2-2

When to Generate Code from MATLAB® Algorithms

To: Use:

Deploy web-based or Windows®

applications
• MATLAB Builder NE

• MATLAB Builder JA

Interface C code with MATLAB MATLAB mex function

2-3

2 Design Considerations for C/C++ Code Generation

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation
at the Command
Line”.

MATLAB Coder user
interface

MATLAB Coder Try this in “C Code
Generation Using the
Project Interface”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder user
interface

MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms codegen function MATLAB Coder

See “Accelerate
MATLAB Algorithms”
on page 21-11.

Integrate MATLAB
code into Simulink®

MATLAB Function
block

Simulink Try this in “Track
Object Using
MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Toolbox Learn more in “Code
Acceleration and
Code Generation from
MATLAB”.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in
“Custom C/C++ Code
Integration” on page
20-12.

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/slhdlcoder.

2-4

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

Prerequisites for C/C++ Code Generation from MATLAB®

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install
the following software:

• MATLAB Coder product

• C/C++ compiler

2-5

2 Design Considerations for C/C++ Code Generation

MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

- Consider disabling run-time checks.

2-6

MATLAB® Code Design Considerations for Code Generation

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Dynamic Memory Allocation” on page 19-99

• “Control Run-Time Checks” on page 21-21

2-7

2 Design Considerations for C/C++ Code Generation

Expected Differences in Behavior After Compiling MATLAB
Code

In this section...

“Why Are There Differences?” on page 2-8

“Character Size” on page 2-8

“Order of Evaluation in Expressions” on page 2-8

“Termination Behavior” on page 2-9

“Size of Variable-Size N-D Arrays” on page 2-9

“Size of Empty Arrays” on page 2-10

“Floating-Point Numerical Results” on page 2-10

“NaN and Infinity Patterns” on page 2-11

“Code Generation Target” on page 2-11

“MATLAB Class Initial Values” on page 2-11

“Variable-Size Support for Code Generation” on page 2-11

Why Are There Differences?
To convert MATLAB code to C/C++ code that works efficiently, the code
generation process introduces optimizations that intentionally cause the
generated code to behave differently — and sometimes produce different
results — from the original source code. This section describes these
differences.

Character Size
MATLAB supports 16-bit characters, but the generated code represents
characters in 8 bits, the standard size for most embedded languages like C.
See “Code Generation for Characters” on page 6-6.

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions

2-8

Expected Differences in Behavior After Compiling MATLAB® Code

with side effects, the generated code may produce the side effects in different
order from the original MATLAB code. Expressions that produce side effects
include those that:

• Modify persistent or global variables

• Display data to the screen

• Write data to files

• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical
operators that do not short circuit.

For more predictable results, it is good coding practice to split expressions
that depend on the order of evaluation into multiple statements. For example,
rewrite:

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source
code. For example, optimizations remove infinite loops from generated code if
they have no side effects. As a result, the generated code may terminate even
though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different
result in generated code than in MATLAB source code. The size function
sometimes returns trailing ones (singleton dimensions) in generated code, but
always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code,

2-9

2 Design Considerations for C/C++ Code Generation

but always returns [4 2] in MATLAB. See “Incompatibility with MATLAB in
Determining Size of Variable-Size N-D Arrays” on page 7-29.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. See “Incompatibility with MATLAB in Determining
Size of Empty Arrays” on page 7-30.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical
results as MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended
precision floating-point registers. Computation results might not match
MATLAB calculations because of different compiler optimization settings or
different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain
advanced library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement
svd to accommodate a smaller footprint. Results might also vary according
to matrix properties. For example, MATLAB might detect symmetric or
Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses
reference implementations of BLAS functions, which may produce different
results from platform-specific BLAS implementations in MATLAB.

2-10

Expected Differences in Behavior After Compiling MATLAB® Code

NaN and Infinity Patterns
The generated code might not produce exactly the same pattern of NaN and inf
values as MATLAB code when these values are mathematically meaningless.
For example, if MATLAB output contains a NaN, output from the generated
code should also contain a NaN, but not necessarily in the same place.

Code Generation Target
The coder.target function returns different values in MATLAB than in the
generated code. The intent is to help you determine whether your function
is executing in MATLAB or has been compiled for a simulation or code
generation target. See coder.target.

MATLAB Class Initial Values
MATLAB computes class initial values at class loading time before code
generation. The code generation software uses the value that MATLAB
computed, it does not recompute the initial value. If the initialization uses
a function call to compute the initial value, the code generation software
does not execute this function. If the function modifies a global state, for
example, a persistent variable, code generation software might provide a
different initial value than MATLAB. For more information, see “Defining
Class Properties for Code Generation” on page 10-5.

Variable-Size Support for Code Generation
For incompatibilities with MATLAB in variable-size support for code
generation, see:

• “Incompatibility with MATLAB for Scalar Expansion” on page 7-27

• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 7-29

• “Incompatibility with MATLAB in Determining Size of Empty Arrays”
on page 7-30

• “Incompatibility with MATLAB in Vector-Vector Indexing” on page 7-31

• “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 7-32

2-11

2 Design Considerations for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays

• Matrix operations, including deletion of rows and columns

• Variable-sized data (see “Variable-Size Data Definition for Code
Generation” on page 7-3)

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 7-32)

• Complex numbers (see “Code Generation for Complex Data” on page 6-4)

• Numeric classes (see “Supported Variable Types” on page 5-18)

• Double-precision, single-precision, and integer math

• Fixed-point arithmetic (see “Code Acceleration and Code Generation from
MATLAB”)

• Program control statements if, switch, for, and while

• All arithmetic, relational, and logical operators

• Local functions

• Persistent variables (see “Define and Initialize Persistent Variables” on
page 5-10)

• Global variables (see “Specifying Global Variable Type and Initial Value in
a Project” on page 16-33).

• Structures

• Characters (see “Code Generation for Characters” on page 6-6)

• Function handles

• Frames

• Variable length input and output argument lists

• Subset of MATLAB toolbox functions

• MATLAB classes

2-12

MATLAB® Language Features Supported for C/C++ Code Generation

• Ability to call functions (see “Resolution of Function Calls in MATLAB
Generated Code” on page 13-2)

MATLAB Language Features Not Supported for C/C++
Code Generation
MATLAB does not support the following features in generated code:

• Anonymous functions

• Cell arrays

• Java

• Nested functions

• Recursion

• Sparse matrices

• try/catch statements

2-13

2 Design Considerations for C/C++ Code Generation

2-14

3

System Objects Supported
for Code Generation

3 System Objects Supported for Code Generation

System Objects Supported for Code Generation

In this section...

“Code Generation for System Objects” on page 3-2

“Computer Vision System Toolbox System Objects” on page 3-2

“Communications System Toolbox System Objects” on page 3-7

“DSP System Toolbox System Objects” on page 3-13

Code Generation for System Objects
You can generate C/C++ code for a subset of System objects provided by
Communications System Toolbox, DSP System Toolbox, and Computer Vision
System Toolbox. To use these System objects, you need to install the requisite
toolbox.

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information on MATLAB objects,
see “Begin Using Object-Oriented Programming”.

Computer Vision System Toolbox System Objects
If you install Computer Vision System Toolbox software, you can generate
C/C++ code for the following Computer Vision System Toolbox System objects.
For more information on how to use these System objects, see “Use System
Objects in MATLAB Code Generation”.

3-2

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images

vision.ContrastAdjuster Adjust image contrast by linear scaling

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal

vision.EdgeDetector Find edges of objects in images

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models. This object supports tunable properties
in code generation.

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization

vision.TemplateMatcher Perform template matching by shifting
template over image

Conversions

vision.Autothresholder Convert intensity image to binary image

vision.ChromaResampler Downsample or upsample chrominance
components of images

vision.ColorSpaceConverter Convert color information between color spaces

vision.DemosaicInterpolator Demosaic Bayer’s format images

vision.GammaCorrector Apply or remove gamma correction from
images or video streams

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type

Feature Detection, Extraction, and Matching

3-3

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.CornerDetector Corner metric matrix and corner detector.
This object supports tunable properties in code
generation.

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices

vision.ImageFilter Perform 2-D FIR filtering of input matrix

vision.MedianFilter 2D median filtering

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle

vision.GeometricScaler Enlarge or shrink image size

vision.GeometricShearer Shift rows or columns of image by linearly
varying offset

vision.GeometricTransformer Apply projective or affine transformation to an
image

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image

vision.MorphologicalClose Perform morphological closing on image

vision.MorphologicalDilate Perform morphological dilation on an image

vision.MorphologicalErode Perform morphological erosion on an image

3-4

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.MorphologicalOpen Perform morphological opening on an image

Object Detection

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

Sinks

vision.DeployableVideoPlayer Send video data to computer screen

vision.VideoFileWriter Write video frames and audio samples to
multimedia file

Sources

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix

vision.BlobAnalysis Compute statistics for connected regions in a
binary image

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices

vision.Histogram Generate histogram of each input matrix. This
object has no tunable properties.

vision.LocalMaximaFinder Find local maxima in matrices

vision.Maximum Find maximum values in input or sequence of
inputs

3-5

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.Mean Find mean value of input or sequence of inputs

vision.Median Find median values in an input

vision.Minimum Find minimum values in input or sequence of
inputs

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images

vision.StandardDeviation Find standard deviation of input or sequence
of inputs

vision.Variance Find variance values in an input or sequence
of inputs

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels

vision.MarkerInserter Draw markers on output image

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images

vision.TextInserter Draw text on image or video stream

Transforms

vision.DCT Compute 2-D discrete cosine transform

vision.FFT Two-dimensional discrete Fourier transform

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs

vision.HoughTransform Find lines in images via Hough transform

vision.IDCT Compute 2-D inverse discrete cosine transform

vision.IFFT Two–dimensional inverse discrete Fourier
transform

vision.Pyramid Perform Gaussian pyramid decomposition

3-6

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both

Communications System Toolbox System Objects
If you install Communications System Toolbox software, you can generate
C/C++ code for the following Communications System Toolbox System objects.
For information on how to use these System objects, see “Code Generation
with System Objects”.

Supported Communications System Toolbox System Objects

Object Description

Source Coding

comm.DifferentialDecoder Decode binary signal using differential decoding

comm.DifferentialEncoder Encode binary signal using differential coding

Channels

comm.AWGNChannel Add white Gaussian noise to input signal

comm.LTEMIMOChannel Filter input signal through LTE MIMO multipath
fading channel

comm.MIMOChannel Filter input signal through MIMO multipath fading
channel

comm.BinarySymmetricChannel Introduce binary errors

Equalizers

comm.MLSEEqualizer Equalize using maximum likelihood sequence
estimation

Filters

comm.IntegrateAndDumpFilter Integrate discrete-time signal with periodic resets

3-7

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

Measurements

comm.ACPR Measure adjacent channel power ratio

comm.CCDF Measure complementary cumulative distribution
function

comm.EVM Measure error vector magnitude

comm.MER Measure modulation error ratio

Sources

comm.BarkerCode Generate Barker code

comm.HadamardCode Generate Hadamard code

comm.KasamiSequence Generate a Kasami sequence

comm.OVSFCode Generate OVSF code

comm.PNSequence Generate a pseudo-noise (PN) sequence

comm.WalshCode Generate Walsh code from orthogonal set of codes

Error Detection and Correction – Block Coding

comm.BCHDecoder Decode data using BCH decoder

comm.BCHEncoder Encode data using BCH encoder

comm.LDPCDecoder Decode binary low-density parity-check code

comm.LDPCEncoder Encode binary low-density parity-check code

comm.RSDecoder Decode data using Reed-Solomon decoder

comm.RSEncoder Encode data using Reed-Solomon encoder

Error Detection and Correction – Convolutional Coding

comm.ConvolutionalEncoder Convolutionally encode binary data

comm.ViterbiDecoder Decode convolutionally encoded data using Viterbi
algorithm

Error Detection and Correction – Cyclic Redundancy Check Coding

3-8

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CRCDetector Detect errors in input data using cyclic redundancy
code

comm.CRCGenerator Generate cyclic redundancy code bits and append to
input data

comm.HDLCRCGenerator Generate CRC code bits and append to input data,
optimized for HDL code generation

comm.TurboDecoder Decode input signal using parallel concatenated
decoding scheme

comm.TurboEncoder Encode input signal using parallel concatenated
encoding scheme

Interleavers – Block

comm.AlgebraicDeinterleaver Deinterleave input symbols using algebraically
derived permutation vector

comm.AlgebraicInterleaver Permute input symbols using an algebraically
derived permutation vector

comm.BlockDeinterleaver Deinterleave input symbols using permutation
vector

comm.BlockInterleaver Permute input symbols using a permutation vector

comm.MatrixDeinterleaver Deinterleave input symbols using permutation
matrix

comm.MatrixInterleaver Permute input symbols using permutation matrix

comm.MatrixHelicalScanDeinterleaver Deinterleave input symbols by filling a matrix along
diagonals

comm.MatrixHelicalScanInterleaver Permute input symbols by selecting matrix elements
along diagonals

Interleavers – Convolutional

comm.ConvolutionalDeinterleaver Restore ordering of symbols using shift registers

comm.ConvolutionalInterleaver Permute input symbols using shift registers

3-9

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.HelicalDeinterleaver Restore ordering of symbols using a helical array

comm.HelicalInterleaver Permute input symbols using a helical array

comm.MultiplexedDeinterleaver Restore ordering of symbols using a set of shift
registers with specified delays

comm.MultiplexedInterleaver Permute input symbols using a set of shift registers
with specified delays

MIMO

comm.OSTBCCombiner Combine inputs using orthogonal space-time block
code

comm.OSTBCEncoder Encode input message using orthogonal space-time
block code

Digital Baseband Modulation – Phase

comm.BPSKDemodulator Demodulate using binary PSK method

comm.BPSKModulator Modulate using binary PSK method

comm.DBPSKModulator Modulate using differential binary PSK method

comm.DPSKDemodulator Demodulate using M-ary DPSK method

comm.DPSKModulator Modulate using M-ary DPSK method

comm.DQPSKDemodulator Demodulate using differential quadrature PSK
method

comm.DQPSKModulator Modulate using differential quadrature PSK method

comm.DBPSKDemodulator Demodulate using M-ary DPSK method

comm.QPSKDemodulator Demodulate using quadrature PSK method

comm.QPSKModulator Modulate using quadrature PSK method

comm.PSKDemodulator Demodulate using M-ary PSK method

comm.PSKModulator Modulate using M-ary PSK method

comm.OQPSKDemodulator Demodulate offset quadrature PSK modulated data

3-10

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.OQPSKModulator Modulate using offset quadrature PSK method

Digital Baseband Modulation – Amplitude

comm.GeneralQAMDemodulator Demodulate using arbitrary QAM constellation.
This object has no tunable properties in code
generation.

comm.GeneralQAMModulator Modulate using arbitrary QAM constellation

comm.PAMDemodulator Demodulate using M-ary PAM method

comm.PAMModulator Modulate using M-ary PAM method

comm.RectangularQAMDemodulator Demodulate using rectangular QAM method

comm.RectangularQAMModulator Modulate using rectangular QAM method

Digital Baseband Modulation – Frequency

comm.FSKDemodulator Demodulate using M-ary FSK method

comm.FSKModulator Modulate using M-ary FSK method

Digital Baseband Modulation – Trelllis Coded

comm.GeneralQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to arbitrary QAM constellation

comm.GeneralQAMTCMModulator Convolutionally encode binary data and map using
arbitrary QAM constellation

comm.PSKTCMDemodulator Demodulate convolutionally encoded data mapped
to M-ary PSK constellation

comm.PSKTCMModulator Convolutionally encode binary data and map using
M-ary PSK constellation

comm.RectangularQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to rectangular QAM constellation

comm.RectangularQAMTCMModulator Convolutionally encode binary data and map using
rectangular QAM constellation

Digital Baseband Modulation – Continuous Phase

3-11

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CPFSKDemodulator Demodulate using CPFSK method and Viterbi
algorithm

comm.CPFSKModulator Modulate using CPFSK method

comm.CPMDemodulator Demodulate using CPM method and Viterbi
algorithm

comm.CPMModulator Modulate using CPM method

comm.GMSKDemodulator Demodulate using GMSK method and the Viterbi
algorithm

comm.GMSKModulator Modulate using GMSK method

comm.MSKDemodulator Demodulate using MSK method and the Viterbi
algorithm

comm.MSKModulator Modulate using MSK method

RF Impairments

comm.MemorylessNonlinearity Apply memoryless nonlinearity to input signal

comm.PhaseFrequencyOffset Apply phase and frequency offsets to input signal.
The PhaseOffset property of this object is not
tunable in code generation.

comm.PhaseNoise Apply phase noise to complex baseband signal

comm.ThermalNoise Add receiver thermal noise

Synchronization – Timing Phase

comm.EarlyLateGateTimingSynchronizer Recover symbol timing phase using early-late gate
method

comm.GardnerTimingSynchronizer Recover symbol timing phase using Gardner’s
method

comm.GMSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

3-12

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MuellerMullerTimingSynchronizer Recover symbol timing phase using Mueller-Muller
method

Synchronization Utilities

comm.CPMCarrierPhaseSynchronizer Recover carrier phase of baseband CPM signal

comm.DiscreteTimeVCO Generate variable frequency sinusoid

Converters

comm.BitToInteger Convert vector of bits to vector of integers

comm.IntegerToBit Convert vector of integers to vector of bits

Sequence Operators

comm.Descrambler Descramble input signal

comm.GoldSequence Generate Gold sequence

comm.Scrambler Scramble input signal

DSP System Toolbox System Objects
If you install DSP System Toolbox software, you can generate C/C++ code for
the following DSP System Toolbox System objects. For information on how to
use these System objects, see “Code Generation with System Objects”.

Supported DSP System Toolbox System Objects

Object Description

Estimation

dsp.BurgAREstimator Compute estimate of autoregressive model parameters
using Burg method

3-13

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.BurgSpectrumEstimator Compute parametric spectral estimate using Burg
method

dsp.CepstralToLPC Convert cepstral coefficients to linear prediction
coefficients

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LPCToAutocorrelation Convert linear prediction coefficients to autocorrelation
coefficients

dsp.LPCToCepstral Convert linear prediction coefficients to cepstral
coefficients

dsp.LPCToLSF Convert linear prediction coefficients to line spectral
frequencies

dsp.LPCToLSP Convert linear prediction coefficients to line spectral
pairs

dsp.LPCToRC Convert linear prediction coefficients to reflection
coefficients

dsp.LSFToLPC Convert line spectral frequencies to linear prediction
coefficients

dsp.LSPToLPC Convert line spectral pairs to linear prediction
coefficients

dsp.RCToAutocorrelation Convert reflection coefficients to autocorrelation
coefficients

dsp.RCToLPC Convert reflection coefficients to linear prediction
coefficients

Filters

dsp.AllpoleFilter IIR Filter with no zeros. Only the Denominator
property is tunable for code generation.

dsp.BiquadFilter Model biquadratic IIR (SOS) filters

3-14

System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.CICDecimator Decimate input using Cascaded Integrator-Comb filter

dsp.CICInterpolator Interpolate signal using Cascaded Integrator-Comb
filter

dsp.DigitalFilter Filter each channel of input over time using
discrete-time filter implementations. The SOSMatrix
and ScaleValues properties at not supported for code
generation.

dsp.FIRDecimator Filter and downsample input signals

dsp.FIRFilter Static or time-varying FIR filter. Only the Numerator
property is tunable for code generation.

dsp.FIRInterpolator Upsample and filter input signals

dsp.FIRRateConverter Upsample, filter and downsample input signals

dsp.IIRFilter Infinite Impulse Response (IIR) filter. Only the
Numerator and Denominator properties are tunable
for code generation.

dsp.LMSFilter Compute output, error, and weights using LMS
adaptive algorithm

Math Operations

dsp.ArrayVectorAdder Add vector to array along specified dimension

dsp.ArrayVectorDivider Divide array by vector along specified dimension

dsp.ArrayVectorMultiplier Multiply array by vector along specified dimension

dsp.ArrayVectorSubtractor Subtract vector from array along specified dimension

dsp.CumulativeProduct Compute cumulative product of channel, column, or
row elements

dsp.CumulativeSum Compute cumulative sum of channel, column, or row
elements

3-15

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.LDLFactor Factor square Hermitian positive definite matrices
into lower, upper, and diagonal components

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LowerTriangularSolver Solve LX = B for X when L is lower triangular matrix

dsp.LUFactor Factor square matrix into lower and upper triangular
matrices

dsp.Normalizer Normalize input

dsp.UpperTriangularSolver Solve UX = B for X when U is upper triangular matrix

Quantizers

dsp.ScalarQuantizerDecoder Convert each index value into quantized output value

dsp.ScalarQuantizerEncoder Perform scalar quantization encoding

dsp.VectorQuantizerDecoder Find vector quantizer codeword for given index value

dsp.VectorQuantizerEncoder Perform vector quantization encoding

Signal Management

dsp.Counter Count up or down through specified range of numbers

dsp.DelayLine Rebuffer sequence of inputs with one-sample shift

Signal Operations

dsp.Convolver Compute convolution of two inputs

dsp.Delay Delay input by specified number of samples or frames

dsp.Interpolator Interpolate values of real input samples

dsp.NCO Generate real or complex sinusoidal signals

dsp.PeakFinder Determine extrema (maxima or minima) in input
signal

dsp.PhaseUnwrapper Unwrap signal phase

3-16

System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.VariableFractionalDelay Delay input by time-varying fractional number of
sample periods

dsp.VariableIntegerDelay Delay input by time-varying integer number of sample
periods

dsp.Window Generate or apply window function. This object has no
tunable properties for code generation.

dsp.ZeroCrossingDetector Calculate number of zero crossings of a signal

Sinks

dsp.AudioPlayer Write audio data to computer’s audio device

dsp.AudioFileWriter Write audio file

dsp.UDPSender Send UDP packets to the network

Sources

dsp.AudioFileReader Read audio samples from an audio file

dsp.AudioRecorder Read audio data from computer’s audio device

dsp.SignalSource Import variable from workspace

dsp.SineWave Generate discrete sine wave. This object has no
tunable properties for code generation.

dsp.UDPReceiver Receive UDP packets from the network

Statistics

dsp.Autocorrelator Compute autocorrelation of vector inputs

dsp.Crosscorrelator Compute cross-correlation of two inputs

dsp.Histogram Output histogram of an input or sequence of inputs.
This object has no tunable properties for code
generation.

dsp.Maximum Compute maximum value in input

dsp.Mean Compute average or mean value in input

3-17

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.Median Compute median value in input

dsp.Minimum Compute minimum value in input

dsp.RMS Compute root-mean-square of vector elements

dsp.StandardDeviation Compute standard deviation of vector elements

dsp.Variance Compute variance of input or sequence of inputs

Transforms

dsp.AnalyticSignal Compute analytic signals of discrete-time inputs

dsp.DCT Compute discrete cosine transform (DCT) of input

dsp.FFT Compute fast Fourier transform (FFT) of input

dsp.IDCT Compute inverse discrete cosine transform (IDCT) of
input

dsp.IFFT Compute inverse fast Fourier transform (IFFT) of
input

3-18

4

Functions Supported for
Code Generation

• “Functions Supported for Code Generation — Alphabetical List” on page 4-2

• “Functions Supported for Code Generation — Categorical List” on page 4-66

4 Functions Supported for Code Generation

Functions Supported for Code Generation — Alphabetical
List

You can generate efficient C/C++ code for a subset of MATLAB and toolbox
functions that you call from MATLAB code. In generated code, each supported
function has the same name, arguments, and functionality as its MATLAB or
toolbox counterparts. However, to generate code for these functions, you must
adhere to certain limitations when calling them from your MATLAB source
code. These limitations appear in the list below.

To find supported functions by MATLAB category or toolbox, see “Functions
Supported for Code Generation — Categorical List” on page 4-66.

Note For more information on code generation for fixed-point algorithms,
refer to “Code Acceleration and Code Generation from MATLAB”.

Function Product Remarks/Limitations

abs MATLAB —

abs Fixed-Point
Toolbox

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acosd MATLAB —

acosh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acot MATLAB —

4-2

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

add Fixed-Point
Toolbox

—

all MATLAB —

all Fixed-Point
Toolbox

—

and MATLAB —

angle MATLAB —

any MATLAB —

any Fixed-Point
Toolbox

—

asec MATLAB —

asecd MATLAB —

asech MATLAB —

asin MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —

asinh MATLAB —

assert MATLAB • Generates specified error messages at compile
time only if all input arguments are constants
or depend on constants. Otherwise, generates
specified error messages at run time.

4-3

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

atan MATLAB —

atan2 MATLAB —

atan2d MATLAB —

atand MATLAB —

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

barthannwin Signal Processing
Toolbox™

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

bartlett Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

4-4

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

besselap Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

beta MATLAB —

betainc MATLAB —

betaln MATLAB —

bi2de Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

bin2dec MATLAB • Does not match MATLAB when the input is
empty.

bitand MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitand Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitandreduce Fixed-Point
Toolbox

—

bitcmp MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

4-5

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

bitcmp Fixed-Point
Toolbox

—

bitconcat Fixed-Point
Toolbox

—

bitget MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitget Fixed-Point
Toolbox

—

bitmax MATLAB —

bitor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitorreduce Fixed-Point
Toolbox

—

bitreplicate Fixed-Point
Toolbox

—

bitrevorder Signal Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

bitrol Fixed-Point
Toolbox

—

bitror Fixed-Point
Toolbox

—

4-6

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

bitset MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitset Fixed-Point
Toolbox

—

bitshift MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitshift Fixed-Point
Toolbox

—

bitsliceget Fixed-Point
Toolbox

—

bitsll Fixed-Point
Toolbox

—

bitsra Fixed-Point
Toolbox

—

bitsrl Fixed-Point
Toolbox

—

bitxor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitxor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitxorreduce Fixed-Point
Toolbox

—

4-7

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

blackman Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

blackmanharris Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

blanks MATLAB —

blkdiag MATLAB —

4-8

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

bohmanwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

bsxfun MATLAB —

buttap Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-9

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

butter Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

buttord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

bwlookup Image Processing
Toolbox™

• For best results, specify an input image of
class logical.

bwmorph Image Processing
Toolbox

• The text string specifying the operation must
be a constant and, for best results, specify an
input image of class logical.

cart2pol MATLAB —

4-10

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

cart2sph MATLAB —

cast MATLAB —

cat MATLAB —

ceil MATLAB —

ceil Fixed-Point
Toolbox

—

cfirpm Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

char MATLAB —

cheb1ap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-11

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

cheb1ord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

cheb2ap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-12

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

cheb2ord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

chebwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-13

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

cheby1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

cheby2 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

chol MATLAB • When there are two output arguments, either
make the input matrix variable-size in both
dimensions, or, if the input matrix must
be fixed size, copy the input matrix to a
variable-size matrix before calling chol.

coder.varsize('B');
B = A;
[B,p] = chol(B);

4-14

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

circshift MATLAB —

class MATLAB —

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Toolbox

—

cond MATLAB —

conj MATLAB —

conj Fixed-Point
Toolbox

—

conv MATLAB —

conv Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

conv2 MATLAB —

4-15

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

convergent Fixed-Point
Toolbox

—

convn MATLAB —

cordicabs Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicangle Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccos Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsin Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Toolbox

• Variable-size signals are not supported.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —

cosd MATLAB —

cosh MATLAB —

cot MATLAB —

cotd MATLAB —

4-16

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

coth MATLAB —

cov MATLAB —

cross MATLAB • If supplied, dim must be a constant.

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

ctranspose Fixed-Point
Toolbox

—

cumprod MATLAB • Logical inputs are not supported. Cast input
to double first.

cumsum MATLAB • Logical inputs are not supported. Cast input
to double first.

cumtrapz MATLAB —

dct Signal Processing
Toolbox

• Does not support variable-size inputs.

• Requires DSP System Toolbox license to
generate code.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

de2bi Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

4-17

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

deal MATLAB —

deblank MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

dec2bin MATLAB • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 52 for double, 23 for single,
16 for char, 32 for int32, 16 for int16, and
so on.

dec2hex MATLAB • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 13 for double, 6 for single, 4
for char, 8 for int32, 4 for int16, and so on.

deconv MATLAB —

del2 MATLAB —

det MATLAB —

4-18

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

detrend MATLAB • If supplied and not empty, the input argument
bp must satisfy the following requirements:

- Be real

- Be sorted in ascending order

- Restrict elements to integers in the interval
[1, n-2], where n is the number of
elements in a column of input argument X
, or the number of elements in X when X is
a row vector

- Contain all unique values

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

diag Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

disp Fixed-Point
Toolbox

—

divide Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not supported.

dot MATLAB —

double MATLAB —

double Fixed-Point
Toolbox

—

4-19

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

downsample Signal Processing
Toolbox

• Does not support variable-size inputs.

dpss Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

eig MATLAB • QZ algorithm used in all cases, whereas
MATLAB might use different algorithms
for different inputs. Consequently, V might
represent a different basis of eigenvectors,
and the eigenvalues in D might not be in the
same order as in MATLAB.

• With one input, [V,D] = eig(A), the results
will be similar to those obtained using [V,D]
= eig(A,eye(size(A)),'qz') in MATLAB,
except that for code generation, the columns
of V are normalized.

• Options 'balance', 'nobalance' are not
supported for the standard eigenvalue
problem, and 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are always of complex type.

4-20

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ellip Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

ellipap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

ellipke MATLAB —

4-21

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

ellipord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

end Fixed-Point
Toolbox

—

epipolarLine Computer Vision
System Toolbox

—

eps MATLAB —

eps Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq MATLAB —

eq Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

erf MATLAB —

erfc MATLAB —

erfcinv MATLAB —

erfcx MATLAB —

erfinv MATLAB —

error MATLAB • This is an extrinsic call.

4-22

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

estimate
Fundamental
Matrix

Computer Vision
System Toolbox

—

estimateUncalibratedRectificationComputer Vision
System Toolbox

—

exp MATLAB —

expint MATLAB —

expm MATLAB —

expm1 MATLAB —

extractFeatures Computer Vision
System Toolbox

—

eye MATLAB • Dimensions must be real, nonnegative,
integers.

factor MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

factorial MATLAB —

false MATLAB • Dimensions must be real, nonnegative,
integers.

fft MATLAB • Length of input vector must be a power of 2.

fft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftshift MATLAB —

4-23

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

fi Fixed-Point
Toolbox

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without any
input arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete
numerictype information of the fi object is
provided.

• Works only for constant input values (value of
input must be known at compile time) when
complete numerictype information of the fi
object is not specified.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

filter MATLAB —

filter Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

filter2 MATLAB —

4-24

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

filtfilt Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

fimath Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

find MATLAB • Issues an error if a variable-sized input
becomes a row vector at run time.

Note This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-sized inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If
the input is a variable-length row vector, the
size of an empty output is 1-by-0, otherwise it
is 0-by-1.

4-25

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

fir1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

fir2 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-26

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fircls Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

fircls1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-27

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

firls Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

firpm Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-28

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

firpmord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

firrcos Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

fix MATLAB —

fix Fixed-Point
Toolbox

—

4-29

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

flattopwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

flipdim MATLAB —

fliplr MATLAB —

flipud MATLAB —

floor MATLAB —

floor Fixed-Point
Toolbox

—

freqspace MATLAB —

freqz Signal Processing
Toolbox

• Does not support variable-size inputs.

• freqz with no output arguments produces a
plot only when the function call terminates
in a semicolon. See “freqz With No Output
Arguments”.

• Requires DSP System Toolbox license to
generate code.

fspecial Image Processing
Toolbox

All inputs must be constants at compilation
time. Expressions or variables are allowed if
their values do not change.

full MATLAB —

4-30

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fzero MATLAB • The first argument must be a function handle.
Does not support structure, inline function, or
string inputs for the first argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

• Only supports the TolX and FunValCheck
fields of an options input structure. Ignores
all other options in an options input
structure. You cannot use the optimset
function to create the options structure.
Create this structure directly, for example,

opt.TolX = tol;
opt.FunValCheck = 'on';

The input structure field names must match
exactly.

gamma MATLAB —

gammainc MATLAB —

gammaln MATLAB —

gaussfir Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-31

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

gausswin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

get Fixed-Point
Toolbox

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Toolbox

—

getmsb Fixed-Point
Toolbox

—

gradient MATLAB —

gt MATLAB —

gt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

hadamard MATLAB —

4-32

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

hamming Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

hankel MATLAB —

hann Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

hex2dec MATLAB —

hex2num MATLAB • For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —

4-33

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

hist MATLAB • Histogram bar plotting not supported; call
with at least one output argument.

• If supplied, the second argument x must be a
scalar constant.

• Inputs must be real.

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

horzcat Fixed-Point
Toolbox

—

hypot MATLAB —

idct Signal Processing
Toolbox

• Does not support variable-size inputs.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

idivide MATLAB • For efficient generated code, MATLAB rules
for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.

• Output of ifft block is always complex.

• Does not support the 'symmetric' option.

4-34

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ifft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

ifftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

ifftshift MATLAB —

imag MATLAB —

imag Fixed-Point
Toolbox

—

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

inf MATLAB • Dimensions must be real, nonnegative,
integers.

int8, int16, int32 MATLAB —

int8, int16, int32 Fixed-Point
Toolbox

—

integralImage Computer Vision
System Toolbox

—

interp1 MATLAB • Supports only linear and nearest
interpolation methods.

• Does not handle evenly spaced X indices
separately.

• X must be strictly monotonically increasing
or strictly monotonically decreasing; does not
reorder indices.

4-35

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

interp2 MATLAB • Supports only 5 <= nargin <= 7.

• XI and YI must be the same size.

• Supports only 'linear' and 'nearest'
methods.

• For best performance, supply X and Y as
vectors.

• When the X or Y inputs are not vectors,
interp2 references only the first row of X and
first column of Y. Supports "plaid" input for X
and Y but does not verify that the input data
is "plaid".

• X and Y must contain monotonically
increasing values. If your application provides
monotonically decreasing values, first use
fliplr and flipud to change X, Y, and Z to
monotonically increasing form before calling
interp2.

intersect MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example zeros(1,0), to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

4-36

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

intfilt Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

intmax MATLAB —

intmin MATLAB —

inv MATLAB Singular matrix inputs can produce nonfinite
values that differ from MATLAB results.

invhilb MATLAB —

ipermute MATLAB —

isa MATLAB —

iscell MATLAB —

ischar MATLAB —

iscolumn MATLAB —

iscolumn Fixed-Point
Toolbox

—

4-37

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for all other targets

isempty MATLAB —

isempty Fixed-Point
Toolbox

—

isEpipoleInImage Computer Vision
System Toolbox

—

isequal MATLAB —

isequal Fixed-Point
Toolbox

—

isequaln MATLAB —

isfi Fixed-Point
Toolbox

—

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Toolbox

—

isfimathlocal Fixed-Point
Toolbox

—

isfinite MATLAB —

isfinite Fixed-Point
Toolbox

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Toolbox

—

isinteger MATLAB —

isletter MATLAB • Input values from the char class must be in
the range 0-127

4-38

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

islogical MATLAB —

ismatrix MATLAB —

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for all other targets.

ismember MATLAB • The second input, S, must be sorted in
ascending order.

• Complex inputs must be single or double.

isnan MATLAB —

isnan Fixed-Point
Toolbox

—

isnumeric MATLAB —

isnumeric Fixed-Point
Toolbox

—

isnumerictype Fixed-Point
Toolbox

—

isprime MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

isreal MATLAB —

isreal Fixed-Point
Toolbox

—

isrow MATLAB —

isrow Fixed-Point
Toolbox

—

isscalar MATLAB —

isscalar Fixed-Point
Toolbox

—

4-39

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

issigned Fixed-Point
Toolbox

—

issorted MATLAB —

isspace MATLAB • Input values from the char class must be in
the range 0-127

issparse MATLAB —

isstrprop MATLAB
• Supports only inputs from char and integer
classes.

• Input values must be in the range 0-127.

isstruct MATLAB —

istrellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

isvector MATLAB —

isvector Fixed-Point
Toolbox

—

kaiser Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-40

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

kaiserord Signal Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

kron MATLAB —

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix, map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function or
a function handle of a colormap function.

• If you set the boundary color zerocolor to the
same color as one of the regions, label2rgb
will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

length MATLAB —

length Fixed-Point
Toolbox

—

4-41

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

levinson Signal Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

lineToBorderPoints Computer Vision
System Toolbox

—

linsolve MATLAB • The option structure must be a constant.

• Supports only a scalar option structure input.
It does not support arrays of option structures.

• Only optimizes these cases:

- UT

- LT

- UHESS = true (the TRANSA can be either
true or false)

- SYM = true and POSDEF = true

All other options are equivalent to using
mldivide.

linspace MATLAB —

4-42

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

logical MATLAB —

logical Fixed-Point
Toolbox

—

logspace MATLAB —

lower MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

lowerbound Fixed-Point
Toolbox

—

lsb Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and double signals.

lt MATLAB —

lt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

lu MATLAB —

magic MATLAB —

matchFeatures Computer Vision
System Toolbox

—

max MATLAB —

4-43

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

max Fixed-Point
Toolbox

—

maxflat Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

mean MATLAB —

mean Fixed-Point
Toolbox

—

median MATLAB —

median Fixed-Point
Toolbox

—

meshgrid MATLAB —

min MATLAB —

min Fixed-Point
Toolbox

—

minus MATLAB —

minus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

mldivide MATLAB —

4-44

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

mod MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors.

mode MATLAB • Does not support third output argument C
(cell array)

mpower MATLAB —

mpower Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

mpy Fixed-Point
Toolbox

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —

4-45

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

mrdivide Fixed-Point
Toolbox

—

mtimes MATLAB —

mtimes Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nargchk MATLAB • Output structure does not include stack
information.

nargin MATLAB —

4-46

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

nargoutchk MATLAB • Output structure does not include stack
information.

nchoosek MATLAB —

ndgrid MATLAB —

ndims MATLAB —

ndims Fixed-Point
Toolbox

—

ne MATLAB —

ne Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

nearest Fixed-Point
Toolbox

—

nextpow2 MATLAB —

nnz MATLAB —

nonzeros MATLAB —

norm MATLAB —

normest MATLAB —

not MATLAB —

nthroot MATLAB —

4-47

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

null MATLAB • Might return a different basis than MATLAB

• Does not support rational basis option (second
input)

num2hex MATLAB —

numberofelements Fixed-Point
Toolbox

• Returns the number of elements of fi objects
in the generated code (works the same as
numel for fi objects in generated code).

numel MATLAB • Returns the number of elements of fi objects
in the generated code, rather than always
returning 1.

numerictype Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
numerictype object that is populated with the
signal’s data type and scaling information.

• Returns the data type when the input is a
non-fixed-point signal.

• Use to create numerictype objects in the
generated code.

nuttallwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

ones MATLAB • Dimensions must be real, nonnegative,
integers.

4-48

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

or MATLAB —

orth MATLAB • Might return a different basis than MATLAB

parzenwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

pascal MATLAB —

permute MATLAB —

permute Fixed-Point
Toolbox

—

pi MATLAB —

pinv MATLAB —

planerot MATLAB —

plus MATLAB —

plus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

pol2cart MATLAB —

poly MATLAB • Does not discard nonfinite input values

• Complex input always produces complex
output

4-49

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

poly2trellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

polyfit MATLAB —

polyval MATLAB —

pow2 Fixed-Point
Toolbox

—

power MATLAB • Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but power(X,Y) is complex.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but X .^ Y is complex. To get
the complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

primes MATLAB —

prod MATLAB —

qr MATLAB —

quad2d MATLAB
• Generates a warning if the size of the internal
storage arrays is not large enough. If a
warning occurs, a possible workaround is to
divide the region of integration into pieces
and sum the integrals over each piece.

quadgk MATLAB —

quatconj Aerospace
Toolbox

—

4-50

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

quatdivide Aerospace
Toolbox

—

quatinv Aerospace
Toolbox

—

quatmod Aerospace
Toolbox

—

quatmultiply Aerospace
Toolbox

—

quatnorm Aerospace
Toolbox

—

quatnormalize Aerospace
Toolbox

—

rand MATLAB —

randi MATLAB —

randn MATLAB —

randperm MATLAB —

range Fixed-Point
Toolbox

—

rank MATLAB —

rcond MATLAB —

rcosfir Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

rdivide MATLAB —

rdivide Fixed-Point
Toolbox

—

real MATLAB —

4-51

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

real Fixed-Point
Toolbox

—

reallog MATLAB —

realmax MATLAB —

realmax Fixed-Point
Toolbox

—

realmin MATLAB —

realmin Fixed-Point
Toolbox

—

realpow MATLAB —

realsqrt MATLAB —

rectwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

reinterpretcast Fixed-Point
Toolbox

—

rem MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors.

repmat MATLAB —

repmat Fixed-Point
Toolbox

—

4-52

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

resample Signal Processing
Toolbox

• Does not support variable-size inputs.

• The upsampling and downsampling factors
must be specified as constants. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

rescale Fixed-Point
Toolbox

—

reshape MATLAB —

reshape Fixed-Point
Toolbox

—

rng MATLAB • For library and executable code generation
targets, and for MEX targets when extrinsic
calls are disabled, supports only the
'default' input and these generator inputs:

- 'twister'

- 'v4'

- 'v5normal'

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of
s=rng from the generated code and pass it to
rng in MATLAB.

4-53

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

roots MATLAB • Output is always variable size

• Output is always complex

• Roots may not be in the same order as
MATLAB

• Roots of poorly conditioned polynomials may
not match MATLAB

rosser MATLAB —

rot90 MATLAB —

round MATLAB —

round Fixed-Point
Toolbox

—

rsf2csf MATLAB —

schur MATLAB Might sometimes return a different Schur
decomposition in generated code than in
MATLAB.

sec MATLAB —

secd MATLAB —

sech MATLAB —

4-54

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

setdiff MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example, zeros(1,0) to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, output i is always
a column vector. If i is empty, it is 0-by-1,
never 0-by-0, even if the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

setxor MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

4-55

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

sfi Fixed-Point
Toolbox

—

sgolay Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

shiftdim MATLAB Second argument must be a constant.

sign MATLAB —

sign Fixed-Point
Toolbox

—

sin MATLAB —

sind MATLAB —

single MATLAB —

single Fixed-Point
Toolbox

—

sinh MATLAB —

size MATLAB —

4-56

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

size Fixed-Point
Toolbox

—

sort MATLAB —

sort Fixed-Point
Toolbox

—

sortrows MATLAB —

sosfilt Signal Processing
Toolbox • Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

sph2cart MATLAB —

squeeze MATLAB —

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Toolbox

• Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sqrtm MATLAB —

std MATLAB —

storedInteger Fixed-Point
Toolbox

—

storedIntegerToDouble Fixed-Point
Toolbox

—

str2func MATLAB • String must be constant/known at compile
time

4-57

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

strcmp MATLAB • Arguments must be computable at compile
time.

strcmpi MATLAB • Input values from the char class must be in
the range 0-127.

strjust MATLAB —

strncmp MATLAB —

strncmpi MATLAB • Input values from the char class must be in
the range 0-127.

strtok MATLAB —

strtrim MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

struct MATLAB —

structfun MATLAB • Does not support the ErrorHandler option.

• The number of outputs must be less than or
equal to three.

sub Fixed-Point
Toolbox

—

sub2ind MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

subsasgn Fixed-Point
Toolbox

—

subspace MATLAB —

subsref Fixed-Point
Toolbox

—

sum MATLAB —

sum Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

4-58

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

svd MATLAB Uses a different SVD implementation than
MATLAB. As the singular value decomposition
is not unique, left and right singular vectors
might differ from those computed by MATLAB.

swapbytes MATLAB Inheritance of the class of the input to swapbytes
in a MATLAB Function block is supported only
when the class of the input is double. For
non-double inputs, the input port data types
must be specified, not inherited.

tan MATLAB —

tand MATLAB —

tanh MATLAB —

taylorwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

times MATLAB —

times Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

4-59

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

toeplitz MATLAB —

trace MATLAB —

trapz MATLAB —

transpose MATLAB —

transpose Fixed-Point
Toolbox

—

triang Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

true MATLAB • Dimensions must be real, nonnegative,
integers.

4-60

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

tukeywin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

typecast MATLAB • Value of string input argument type must be
lower case

• You might receive a size error when you use
typecast with inheritance of input port data
types in MATLAB Function blocks. To avoid
this error, specify the block’s input port data
types explicitly.

ufi Fixed-Point
Toolbox

—

uint8, uint16, uint32 MATLAB —

uint8, uint16, uint32 Fixed-Point
Toolbox

—

uminus MATLAB —

uminus Fixed-Point
Toolbox

—

4-61

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

union MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0) to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

unique MATLAB • When rows is not specified:

- The first input must be a row vector.

- If the vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs m and n are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output b is 0-by-0.

• Complex inputs must be single or double.

4-62

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors

upfirdn Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code

uplus MATLAB —

uplus Fixed-Point
Toolbox

—

upper MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

upperbound Fixed-Point
Toolbox

—

4-63

4 Functions Supported for Code Generation

Function Product Remarks/Limitations

upsample Signal Processing
Toolbox

• Does not support variable-size inputs.

• Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

vander MATLAB —

var MATLAB —

vertcat Fixed-Point
Toolbox

—

wilkinson MATLAB —

xcorr Signal Processing
Toolbox

• Does not support variable-size inputs.

• Does not support the case where A is a matrix

• Does not support partial (abbreviated) strings
of biased, unbiased, coeff, or none

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code

xor MATLAB —

yulewalk Signal Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-46.

• Requires DSP System Toolbox license to
generate code.

4-64

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —

4-65

4 Functions Supported for Code Generation

Functions Supported for Code Generation — Categorical
List

In this section...

“Aerospace Toolbox Functions” on page 4-67

“Arithmetic Operator Functions” on page 4-67

“Bit-Wise Operation Functions” on page 4-68

“Casting Functions” on page 4-68

“Communications System Toolbox Functions” on page 4-69

“Complex Number Functions” on page 4-69

“Computer Vision System Toolbox Functions” on page 4-70

“Data Type Functions” on page 4-71

“Derivative and Integral Functions” on page 4-71

“Discrete Math Functions” on page 4-72

“Error Handling Functions” on page 4-72

“Exponential Functions” on page 4-72

“Filtering and Convolution Functions” on page 4-73

“Fixed-Point Toolbox Functions” on page 4-73

“Histogram Functions” on page 4-82

“Image Processing Toolbox Functions” on page 4-82

“Input and Output Functions” on page 4-83

“Interpolation and Computational Geometry” on page 4-83

“Linear Algebra” on page 4-83

“Logical Operator Functions” on page 4-84

“MATLAB Compiler Functions” on page 4-84

“Matrix and Array Functions” on page 4-85

“Nonlinear Numerical Methods” on page 4-89

“Polynomial Functions” on page 4-89

4-66

Functions Supported for Code Generation — Categorical List

In this section...

“Relational Operator Functions” on page 4-89

“Rounding and Remainder Functions” on page 4-90

“Set Functions” on page 4-90

“Signal Processing Functions in MATLAB” on page 4-91

“Signal Processing Toolbox Functions” on page 4-91

“Special Values” on page 4-96

“Specialized Math” on page 4-96

“Statistical Functions” on page 4-97

“String Functions” on page 4-97

“Structure Functions” on page 4-98

“Trigonometric Functions” on page 4-98

Aerospace Toolbox Functions

Function Description

quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

Arithmetic Operator Functions
See Arithmetic Operators for detailed descriptions of the following operator
equivalent functions.

4-67

4 Functions Supported for Code Generation

Function Description

ctranspose Complex conjugate transpose (')

idivide Integer division with rounding option

isa Determine if input is object of given class

ldivide Left array divide

minus Minus (-)

mldivide Left matrix divide (\)

mpower Equivalent of array power operator (.^)

mrdivide Right matrix divide

mtimes Matrix multiply (*)

plus Plus (+)

power Array power

rdivide Right array divide

times Array multiply

transpose Matrix transpose (')

uminus Unary minus (-)

uplus Unary plus (+)

Bit-Wise Operation Functions

Function Description

swapbytes Swap byte ordering

Casting Functions

Data Type Description

cast Cast variable to different data type

char Create character array (string)

4-68

Functions Supported for Code Generation — Categorical List

Data Type Description

class Query class of object argument

double Convert to double-precision floating point

int8, int16, int32 Convert to signed integer data type

logical Convert to Boolean true or false data type

single Convert to single-precision floating point

typecast Convert data types without changing underlying data

uint8, uint16,
uint32

Convert to unsigned integer data type

Communications System Toolbox Functions
Function Remarks/Limitations

bi2de —

de2bi —

istrellis —

poly2trellis —

rcosfir —

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary components

conj Return the conjugate of a complex number

imag Return the imaginary part of a complex number

isnumeric Return true for numeric arrays

isreal Return false (0) for a complex number

isscalar Return true if array is a scalar

4-69

4 Functions Supported for Code Generation

Function Description

real Return the real part of a complex number

unwrap Correct phase angles to produce smoother phase plots

Computer Vision System Toolbox Functions

Function Description

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding
points in stereo image

estimateUncalibratedRectification Uncalibrated stereo rectification

extractFeatures Extract interest point descriptors

integralImage Compute integral image

isEpipoleInImage Determine whether image contains epipole

vision.KalmanFilter Kalman filter for object tracking

4-70

Functions Supported for Code Generation — Categorical List

Function Description

lineToBorderPoints Intersection points of lines in image and image
border

matchFeatures Find matching image features

Data Type Functions

Function Description

deal Distribute inputs to outputs

iscell Determine whether input is cell array

nargchk Validate number of input arguments

nargoutchk Validate number of output arguments

str2func Construct function handle from function name string

structfun Apply function to each field of scalar structure

Derivative and Integral Functions

Function Description

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

diff Differences and approximate derivatives

gradient Numerical gradient

trapz Trapezoidal numerical integration

4-71

4 Functions Supported for Code Generation

Discrete Math Functions

Function Description

factor Return a row vector containing the prime factors of n

gcd Return an array containing the greatest common divisors of the
corresponding elements of integer arrays

isprime Array elements that are prime numbers

lcm Least common multiple of corresponding elements in arrays

nchoosek Binomial coefficient or all combinations

primes Generate list of prime numbers

Error Handling Functions

Function Description

assert Generate error when condition is violated

error Display message and abort function

Exponential Functions

Function Description

exp Exponential

expm Matrix exponential

expm1 Compute exp(x)-1 accurately for small values of x

factorial Factorial function

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for small values of x

4-72

Functions Supported for Code Generation — Categorical List

Function Description

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

Filtering and Convolution Functions

Function Description

conv Convolution and polynomial multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Fixed-Point Toolbox Functions
In addition to any function-specific limitations listed in the table, the following
general limitations always apply to the use of Fixed-Point Toolbox functions
in generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

4-73

4 Functions Supported for Code Generation

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• All general limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for C/C++ Code Generation”
on page 2-13 for more information.

Function Remarks/Limitations

abs N/A

add N/A

all N/A

any N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

4-74

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

bitsliceget N/A

bitsll N/A

bitsra N/A

bitsrl N/A

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

conj N/A

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

4-75

4 Functions Supported for Code Generation

Function Remarks/Limitations

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

disp N/A

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

4-76

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

fix N/A

floor N/A

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

horzcat N/A

imag N/A

int8, int16, int32 N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

4-77

4 Functions Supported for Code Generation

Function Remarks/Limitations

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

4-78

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

mpower • The exponent input, k, must be constant; that is, its value must be
known at compile time.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both

4-79

4 Functions Supported for Code Generation

Function Remarks/Limitations

inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements and numel both work the same as MATLAB
numel for fi objects in the generated code.

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

permute N/A

plus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

pow2 N/A

power The exponent input, k, must be constant; that is, its value must be
known at compile time.

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

repmat N/A

rescale N/A

reshape N/A

4-80

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

round N/A

sfi N/A

sign N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

storedIntegerToDouble N/A

sub N/A

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi N/A

uint8, uint16, uint32 N/A

4-81

4 Functions Supported for Code Generation

Function Remarks/Limitations

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

Histogram Functions

Function Description

hist Non-graphical histogram

histc Histogram count

Image Processing Toolbox Functions
You must have the MATLAB Coder and Image Processing Toolbox software
installed to generate C/C++ code from MATLAB for these functions.

Function Remarks/Limitations

bwlookup For best results, specify an input image of class logical.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

fspecial All inputs must be constants at compilation time. Expressions or
variables are allowed if their values do not change.

label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

4-82

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

Input and Output Functions

Function Description

nargin Return the number of input arguments a user has supplied

nargout Return the number of output return values a user has requested

Interpolation and Computational Geometry

Function Description

cart2pol Transform Cartesian coordinates to polar or cylindrical

cart2sph Transform Cartesian coordinates to spherical

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

pol2cart Transform polar or cylindrical coordinates to Cartesian

sph2cart Transform spherical coordinates to Cartesian

Linear Algebra

Function Description

linsolve Solve linear system of equations

null Null space

4-83

4 Functions Supported for Code Generation

Function Description

orth Range space of matrix

rsf2csf Convert real Schur form to complex Schur form

schur Schur decomposition

sqrtm Matrix square root

Logical Operator Functions

Function Description

and Logical AND (&&)

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

not Logical NOT (~)

or Logical OR (||)

xor Logical exclusive-OR

MATLAB Compiler Functions

Function Description

isdeployed Determine whether code is running in deployed or MATLAB mode

ismcc Test if code is running during compilation process (using mcc)

4-84

Functions Supported for Code Generation — Categorical List

Matrix and Array Functions

Function Description

abs Return absolute value and complex magnitude of an array

all Test if all elements are nonzero

angle Phase angle

any Test for any nonzero elements

blkdiag Construct block diagonal matrix from input arguments

bsxfun Applies element-by-element binary operation to two arrays with
singleton expansion enabled

cat Concatenate arrays along specified dimension

circshift Shift array circularly

compan Companion matrix

cond Condition number of a matrix with respect to inversion

cov Covariance matrix

cross Vector cross product

cumprod Cumulative product of array elements

cumsum Cumulative sum of array elements

det Matrix determinant

diag Return a matrix formed around the specified diagonal vector and the
specified diagonal (0, 1, 2,...) it occupies

diff Differences and approximate derivatives

dot Vector dot product

eig Eigenvalues and eigenvectors

eye Identity matrix

false Return an array of 0s for the specified dimensions

find Find indices and values of nonzero elements

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

4-85

4 Functions Supported for Code Generation

Function Description

flipud Flip matrix up to down

full Convert sparse matrix to full matrix

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

ind2sub Subscripts from linear index

inv Inverse of a square matrix

invhilb Inverse of Hilbert matrix

ipermute Inverse permute dimensions of array

iscolumn True if input is a column vector

isempty Determine whether array is empty

isequal Test arrays for equality

isequaln Test arrays for equality, treating NaNs as equal

isfinite Detect finite elements of an array

isfloat Determine if input is floating-point array

isinf Detect infinite elements of an array

isinteger Determine if input is integer array

islogical Determine if input is logical array

ismatrix True if input is a matrix

isnan Detect NaN elements of an array

isrow True if input is a row vector

issparse Determine whether input is sparse

isvector Determine whether input is vector

kron Kronecker tensor product

length Return the length of a matrix

linspace Generate linearly spaced vectors

4-86

Functions Supported for Code Generation — Categorical List

Function Description

logspace Generate logarithmically spaced vectors

lu Matrix factorization

magic Magic square

max Maximum elements of a matrix

min Minimum elements of a matrix

ndgrid Generate arrays for N-D functions and interpolation

ndims Number of dimensions

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

norm Vector and matrix norms

normest 2-norm estimate

numel Number of elements in array or subscripted array

ones Create a matrix of all 1s

pascal Pascal matrix

permute Rearrange dimensions of array

pinv Pseudoinverse of a matrix

planerot Givens plane rotation

prod Product of array element

qr Orthogonal-triangular decomposition

rand Uniformly distributed pseudorandom numbers

randi Uniformly distributed pseudorandom integers

randn Normally distributed random numbers

randperm Random permutation

rank Rank of matrix

rcond Matrix reciprocal condition number estimate

repmat Replicate and tile an array

4-87

4 Functions Supported for Code Generation

Function Description

reshape Reshape one array into the dimensions of another

rng Control random number generation

rosser Classic symmetric eigenvalue test problem

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sign Signum function

size Return the size of a matrix

sort Sort elements in ascending or descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

subspace Angle between two subspaces

sum Sum of matrix elements

toeplitz Toeplitz matrix

trace Sum of diagonal elements

tril Extract lower triangular part

triu Extract upper triangular part

true Return an array of logical (Boolean) 1s for the specified dimensions

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

zeros Create a matrix of all zeros

4-88

Functions Supported for Code Generation — Categorical List

Nonlinear Numerical Methods

Function Description

fzero Find root of continuous function of one variable

quad2d Numerically evaluate double integral over planar region

quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Polynomial Functions

Function Description

poly Polynomial with specified roots

polyfit Polynomial curve fitting

polyval Polynomial evaluation

roots Polynomial roots

Relational Operator Functions

Function Description

eq Equal (==)

ge Greater than or equal to (>=)

gt Greater than (>)

le Less than or equal to (<=)

lt Less than (<)

ne Not equal (~=)

4-89

4 Functions Supported for Code Generation

Rounding and Remainder Functions

Function Description

ceil Round toward plus infinity

ceil Round toward positive infinity

convergent Round toward nearest integer with ties rounding to nearest even integer

fix Round toward zero

fix Round toward zero

floor Round toward minus infinity

floor Round toward negative infinity

mod Modulus (signed remainder after division)

nearest Round toward nearest integer with ties rounding toward positive infinity

rem Remainder after division

round Round toward nearest integer

round Round fi object toward nearest integer or round input data using
quantizer object

Set Functions

Function Description

intersect Find set intersection of two vectors

ismember Array elements that are members of set

issorted Determine whether set elements are in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

4-90

Functions Supported for Code Generation — Categorical List

Signal Processing Functions in MATLAB

Function Description

chol Cholesky factorization

conv Convolution and polynomial multiplication

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to center of spectrum

filter Filter a data sequence using a digital filter that works for both real and
complex inputs

freqspace Frequency spacing for frequency response

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier transform

ifftn N-D inverse discrete Fourier transform

ifftshift Inverse discrete Fourier transform shift

svd Singular value decomposition

zp2tf Convert zero-pole-gain filter parameters to transfer function form

Signal Processing Toolbox Functions
All of these functions require a DSP System Toolbox license to generate code.
These functions do not support variable-size inputs, you must define the size
and type of the function inputs. For more information, see “Specifying Inputs
in Code Generation from MATLAB ”.

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.

4-91

4 Functions Supported for Code Generation

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

4-92

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

dct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

4-93

4 Functions Supported for Code Generation

Function Remarks/Limitations

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firrcos All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz freqz with no output arguments produces a plot only when the function
call terminates in a semicolon. See “freqzWith No Output Arguments”.

gaussfir All inputs must be constant. Expressions or variables are allowed if
their values do not change.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

4-94

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn • Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values
do not change.

• Variable-size inputs are not supported.

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

4-95

4 Functions Supported for Code Generation

Special Values

Symbol Description

eps Floating-point relative accuracy

inf IEEE® arithmetic representation for positive infinity

intmax Largest possible value of specified integer type

intmin Smallest possible value of specified integer type

NaN or nan Not a number

pi Ratio of the circumference to the diameter for a circle

realmax Largest positive floating-point number

realmin Smallest positive floating-point number

Specialized Math

Symbol Description

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipke Complete elliptic integrals of first and second kind

erf Error function

erfc Complementary error function

erfcinv Inverse of complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of the gamma function

4-96

Functions Supported for Code Generation — Categorical List

Statistical Functions

Function Description

corrcoef Correlation coefficients

mean Average or mean value of array

median Median value of array

mode Most frequent values in array

std Standard deviation

var Variance

String Functions

Function Description

bin2dec Convert binary number string to decimal number

bitmax Maximum double-precision floating-point integer

blanks Create string of blank characters

char Create character array (string)

deblank Strip trailing blanks from end of string

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision number

ischar True for character array (string)

isletter Array elements that are alphabetic letters

isspace Array elements that are space characters

isstrprop Determine whether string is of specified category

lower Convert string to lowercase

num2hex Convert singles and doubles to IEEE hexadecimal strings

4-97

4 Functions Supported for Code Generation

Function Description

strcmp Compare strings (case sensitive)

strcmpi Compare strings (case insensitive)

strjust Justify character array

strncmp Compare first n characters of strings (case sensitive)

strncmpi Compare first n characters of strings (case insensitive)

strtok Selected parts of string

strtrim Remove leading and trailing white space from string

upper Convert string to uppercase

Structure Functions

Function Description

isfield Determine whether input is structure array field

struct Create structure

isstruct Determine whether input is a structure

Trigonometric Functions

Function Description

acos Inverse cosine

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

4-98

Functions Supported for Code Generation — Categorical List

Function Description

acsch Inverse cosecant and inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atan2 Four quadrant inverse tangent

atan2d Four-quadrant inverse tangent, result in degrees

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine

cosd Cosine; result in degrees

cosh Hyperbolic cosine

cot Cotangent; result in radians

cotd Cotangent; result in degrees

coth Hyperbolic cotangent

csc Cosecant; result in radians

cscd Cosecant; result in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant; result in radians

secd Secant; result in degrees

sech Hyperbolic secant

sin Sine

sind Sine; result in degrees

4-99

4 Functions Supported for Code Generation

Function Description

sinh Hyperbolic sine

tan Tangent

tand Tangent; result in degrees

tanh Hyperbolic tangent

4-100

5

Defining MATLAB
Variables for C/C++ Code
Generation

• “Variables Definition for Code Generation” on page 5-2

• “Best Practices for Defining Variables for C/C++ Code Generation” on
page 5-3

• “Eliminate Redundant Copies of Variables in Generated Code” on page 5-7

• “Reassignment of Variable Properties” on page 5-9

• “Define and Initialize Persistent Variables” on page 5-10

• “Reuse the Same Variable with Different Properties” on page 5-11

• “Avoid Overflows in for-Loops” on page 5-16

• “Supported Variable Types” on page 5-18

5 Defining MATLAB® Variables for C/C++ Code Generation

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically
at run time so you can use the same variable to hold a value of any class, size,
or complexity. For example, the following code works in MATLAB:

function x = foo(c) %#codegen
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable
properties at compile time. Therefore, for C/C++ code generation, you must
explicitly define the class, size, and complexity of variables in MATLAB
source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++
Code Generation” on page 5-3.

5-2

Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 5-3

“Use Caution When Reassigning Variables” on page 5-6

“Use Type Cast Operators in Variable Definitions” on page 5-6

“Define Matrices Before Assigning Indexed Variables” on page 5-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define
the class, size, and complexity of variables before using them in operations or
returning them as outputs. Define variables by assignment, but note that the
assignment copies not only the value, but also the size, class, and complexity
represented by that value to the new variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.

b = a; b with properties of a (real double
scalar).

c = zeros(5,2); c as a real 5-by-2 array of doubles.

d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.

y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on all execution
paths during C/C++ code generation (see Defining a Variable for Multiple
Execution Paths on page 5-4).

The data that you assign to a variable can be a scalar, matrix, or structure. If
your variable is a structure, define the properties of each field explicitly (see
Defining All Fields in a Structure on page 5-5).

5-3

5 Defining MATLAB® Variables for C/C++ Code Generation

Initializing the new variable to the value of the assigned data sometimes
results in redundant copies in the generated code. To avoid redundant
copies, you can define variables without initializing their values by using the
coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 5-7.

When you define variables, they are local by default; they do not persist
between function calls. To make variables persistent, see “Define and
Initialize Persistent Variables” on page 5-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code
works in MATLAB, but generates a compilation error during code generation
because it detects that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

5-4

Best Practices for Defining Variables for C/C++ Code Generation

Defining All Fields in a Structure

Consider the following MATLAB code:

...
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else
clause uses fields a and b. This code works in MATLAB, but generates a
compilation error during C/C++ code generation because it detects a structure
type mismatch. To prevent this error, do not add fields to a structure after
you perform certain operations on the structure. For more information, see
“Structure Definition for Code Generation” on page 8-2.

To make this code suitable for C/C++ code generation, define all fields of
s before using it.

...
% Define all fields in structure s
s = struct(a ,0, b , 0);
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Use s
use(s);
...

5-5

5 Defining MATLAB® Variables for C/C++ Code Generation

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++
code generation; that is, each variable must have a specific class, size and
complexity. Generally, if you reassign variable properties after the initial
assignment, you get a compilation error during code generation, but there are
exceptions, as described in “Reassignment of Variable Properties” on page 5-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types,
you can use type cast operators in variable definitions. For example, the
following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % z has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by
writing into an element beyond its current size. Such indexing operations
produce run-time errors. You must define the matrix first before assigning
values to any of its elements.

For example, the following initial assignment is not allowed for code
generation:

g(3,2) = 14.6; % Not allowed for creating g
% OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with
MATLAB in Matrix Indexing Operations for Code Generation” on page 7-32.

5-6

Eliminate Redundant Copies of Variables in Generated Code

Eliminate Redundant Copies of Variables in Generated
Code

In this section...

“When Redundant Copies Occur” on page 5-7

“How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 5-7

“Defining Uninitialized Variables” on page 5-8

When Redundant Copies Occur
During C/C++ code generation, MATLAB checks for statements that attempt
to access uninitialized memory. If it detects execution paths where a variable
is used but is potentially not defined, it generates a compile-time error. To
prevent these errors, define all variables by assignment before using them in
operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the
assigned data to the new variable, but also initialize the new variable to the
assigned value. This forced initialization sometimes results in redundant
copies in C/C++ code. To eliminate redundant copies, define uninitialized
variables by using the coder.nullcopy function, as described in “How to
Eliminate Redundant Copies by Defining Uninitialized Variables” on page 5-7.

How to Eliminate Redundant Copies by Defining
Uninitialized Variables
1 Define the variable with coder.nullcopy.

2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its
elements before passing the array as an input to a function or operator
— even if the function or operator does not read from the uninitialized
portion of the array.

5-7

5 Defining MATLAB® Variables for C/C++ Code Generation

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing
uninitialized data may lead to segmentation violations or nondeterministic
program behavior (different runs of the same program may yield
inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only
defines X to be a 1-by-5 vector of real doubles, but also initializes each element
of X to zero.

function X = fcn %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

This forced initialization creates an extra copy in the generated code. To
eliminate this overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

5-8

Reassignment of Variable Properties

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign
after the initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but
different sizes. If the size of the initial assignment is not constant, the
variable is dynamically sized in generated code. For more information, see
“Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the
initial assignment if each occurrence of the variable can have only one type.
In this case, the variable is renamed in the generated code to create multiple
independent variables. For more information, see “Reuse the Same Variable
with Different Properties” on page 5-11.

5-9

5 Defining MATLAB® Variables for C/C++ Code Generation

Define and Initialize Persistent Variables
Persistent variables are local to the function in which they are defined,
but they retain their values in memory between calls to the function. To
define persistent variables for C/C++ code generation, use the persistent
statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the
header and comments, but before the first use of the variable. During code
generation, the value of the persistent variable is initialized to an empty
matrix by default. You can assign your own value after the definition by using
the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;
end

5-10

Reuse the Same Variable with Different Properties

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on
page 5-11

“When You Cannot Reuse Variables” on page 5-12

“Limitations of Variable Reuse” on page 5-14

When You Can Reuse the Same Variable with
Different Properties
You can reuse (reassign) an input, output, or local variable with different
class, size, or complexity if MATLAB can unambiguously determine the
properties of each occurrence of this variable during C/C++ code generation.
If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation
report (see “Viewing Variables in Your MATLAB Code” on page 19-184).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the
variable t in an if statement, where it holds a scalar double, then reuses t
outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t,
see Variable Reuse in an if Statement on page 5-12.

5-11

5 Defining MATLAB® Variables for C/C++ Code Generation

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the
class, size, and complexity of an occurrence of a variable unambiguously
during code generation. In this case, variables cannot be renamed and a
compilation error occurs.

For example, the following example2 function assigns a fixed-point value to
x in the if statement and reuses x to store a matrix of doubles in the else
clause. It then uses x after the if-else statement. This function generates a
compilation error because after the if-else statement, variable x can have
different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
if use_fixpoint
% x is fixed-point

x = fi(data, 1, 12, 3);
else

% x is a matrix of doubles
x = data;

end
% When x is reused here, it is not possible to determine its
% class, size, and complexity
t = sum(sum(x));
y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);

5-12

Reuse the Same Variable with Different Properties

y = sum(u(t(2:end-1)));
end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note codegen requires a MATLAB Coder license.

When the compilation is complete, codegen generates a MEX function,
example1x in the current folder, and provides a link to the code generation
report.

3 Open the code generation report.

4 In the MATLAB code pane of the code generation report, place your pointer
over the variable t inside the if statement.

The code generation report highlights both instances of t in the if
statement because they share the same class, size, and complexity. It
displays the data type information for t at this point in the code. Here,
t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the
variable t outside the for-loop.

5-13

5 Defining MATLAB® Variables for C/C++ Code Generation

This time, the report highlights both instances of t outside the if
statement. The report indicates that tmight hold up to 25 doubles. The size
of t is :25, that is, a column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

The report displays a list of all the variables in example1. There are two
uniquely named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if
statement.

8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if
statement.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.

• Global variables.

• Variables passed to C code using coder.ref, coder.rref, coder.wref.

• Variables whose size is set using coder.varsize.

• Variables whose names are controlled using coder.cstructname.

• The index variable of a for-loop when it is used inside the loop body.

5-14

Reuse the Same Variable with Different Properties

• The block outputs of a MATLAB Function block in a Simulink model.

• Chart-owned variables of a MATLAB function in a Stateflow® chart.

5-15

5 Defining MATLAB® Variables for C/C++ Code Generation

Avoid Overflows in for-Loops
When memory integrity checks are enabled, if the code generation software
detects that a loop variable might overflow on the last iteration of the
for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the
error

Workaround

• The loop counter increments by 1

• The end value equals the
maximum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the maximum
value of the integer type. For
example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1

• The end value equals the
minimum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the minimum
value of the integer type. For
example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

5-16

Avoid Overflows in for-Loops

Loop conditions causing the
error

Workaround

• The loop counter increments or
decrements by 1

• The start value equals the
minimum or maximum value of
the integer type

• The end value equals the
maximum or minimum value of
the integer type

The loop covers the full range of the
integer type.

Rewrite the loop casting the type
of the loop counter start, step, and
end values to a bigger integer or to
double For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
% Loop body

end

to

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
% Loop body

end

• The loop counter increments or
decrements by a value not equal
to 1

• On last loop iteration, the loop
variable value is not equal to the
end value

Note The software error checking
might be too conservative and report
the possibility of an infinite under
these circumstances even though an
infinite loop would never occur.

Rewrite the loop so that the loop
variable on the last loop iteration is
equal to the end value.

5-17

5 Defining MATLAB® Variables for C/C++ Code Generation

Supported Variable Types
You can use the following data types for C/C++ code generation from
MATLAB:

Type Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components

double Double-precision floating point

int8, int16, int32 Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure

uint8, uint16,
uint32

Unsigned integer

Fixed-point See “Fixed-Point Data Types”.

5-18

6

Defining Data for Code
Generation

• “Data Definition for Code Generation” on page 6-2

• “Code Generation for Complex Data” on page 6-4

• “Code Generation for Characters” on page 6-6

6 Defining Data for Code Generation

Data Definition for Code Generation
To generate efficient standalone code, you must define the following types
and classes of data differently than you normally would when running your
code in the MATLAB environment:

Data What’s Different More Information

Complex numbers • Complexity of
variables must be set
at time of assignment
and before first use

• Expressions
containing a complex
number or variable
always evaluate to a
complex result, even
if the result is zero

Note Because
MATLAB does not
support complex
integer arithmetic,
you cannot generate
code for functions that
use complex integer
arithmetic

“Code Generation for
Complex Data” on page
6-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page 6-6

6-2

Data Definition for Code Generation

Data What’s Different More Information

Enumerated data • Supports
integer-based
enumerated types
only

• Restricted use in
switch statements
and for-loops

“Enumerated Data”

Function handles • Function handles
must be scalar values

• Same bound variable
cannot reference
different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

“Function Handles”

6-3

6 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 6-4

“Expressions Containing Complex Operands Yield Complex Results” on
page 6-5

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of
assignment, either by assigning a complex constant or using the complex
function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Once you set the type and size of a variable, you cannot cast it to another
type or size. In the following example, the variable x is defined as complex
and stays complex:

x = 1 + 2i; % Defines x as a complex variable.
y = int16(x); % Real and imaginary parts of y are int16.
x = 3; % x now has the value 3 + 0i.

Mismatches can also occur when you assign a real operand the complex result
of an operation:

z = 3; % Sets type of z to double (real)
z = 3 + 2i; % ERROR: cannot recast z to complex

As a workaround, set the complexity of the operand to match the result
of the operation:

m = complex(3); % Sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % Assigns a complex result to a complex number

6-4

Code Generation for Complex Data

Expressions Containing Complex Operands Yield
Complex Results
In general, expressions that contain one or more complex operands always
produce a complex result in generated code, even if the value of the result is
zero. Consider the following example:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i.

In MATLAB, this code generates the real result z = 4. However, during
code generation, the types for x and y are known, but their values are not.
Because either or both operands in this expression are complex, z is defined
as a complex variable requiring storage for both a real and an imaginary
part. This means that z equals the complex result 4 + 0i in generated code,
not 4 as in MATLAB code.

There are two exceptions to this behavior:

• Functions that take complex arguments, but produce real results

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments, but produce complex results:

z = complex(x,y); % z is a complex number for a real x and y.

6-5

6 Defining Data for Code Generation

Code Generation for Characters
The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because
many mathematical operations require more than 8 bits of precision, it is
recommended that you do not perform arithmetic with characters if you
intend to generate code from your MATLAB algorithm.

6-6

7

Code Generation for
Variable-Size Data

• “What Is Variable-Size Data?” on page 7-2

• “Variable-Size Data Definition for Code Generation” on page 7-3

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Memory Allocation of Variable-Size Data” on page 7-5

• “Specify Variable-Size Data Without Dynamic Memory Allocation” on
page 7-6

• “Variable-Size Data in Code Generation Reports” on page 7-10

• “Define Variable-Size Data for Code Generation” on page 7-12

• “C Code Interface for Arrays” on page 7-19

• “Troubleshooting Issues with Variable-Size Data” on page 7-23

• “Incompatibilities with MATLAB in Variable-Size Support for Code
Generation” on page 7-27

• “Restrictions on Variable Sizing in Toolbox Functions Supported for Code
Generation” on page 7-34

7 Code Generation for Variable-Size Data

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

For example, in the following MATLAB function nway, B is a variable-size
array; its length is not known at compile time.

function B = nway(A,n)
% Compute average of every N elements of A and put them in B.
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

error('n <= 0 or does not divide number of elements evenly');
end

7-2

Variable-Size Data Definition for Code Generation

Variable-Size Data Definition for Code Generation
In the MATLAB language, all data can vary in size. By contrast, the
semantics of generated code constrains the class, complexity, and shape of
every expression, variable, and structure field. Therefore, for code generation,
you must use each variable consistently. Each variable must:

• Be either complex or real (determined at first assignment)

• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB.
For example, if size(A) == [4 5], the shape of variable A is 4 x 5.
For variable-size data, the shape can be abstract. That is, one or more
dimensions can be unknown (such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed
attributes after initial assignments, and flags these occurrences as errors
during code generation. However, you can override this behavior by defining
variables or structure fields as variable-size data. You can then generate
standalone code for bounded and unbounded variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data”
on page 7-4

7-3

7 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data
You can generate code for bounded and unbounded variable-size data.
Bounded variable-size data has fixed upper bounds; this data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds; this data must be allocated on the
heap. If you use unbounded data, you must use dynamic memory allocation
so that the compiler:

• Does not check for upper bounds

• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more
information, see “Control Memory Allocation of Variable-Size Data” on page
7-5.

7-4

Control Memory Allocation of Variable-Size Data

Control Memory Allocation of Variable-Size Data
All data whose size exceeds the dynamic memory allocation threshold is
allocated on the heap. The default dynamic memory allocation threshold is
64 kilobytes. All data whose size is less than this threshold is allocated on
the stack.

Dynamic memory allocation is an expensive operation; the performance
cost may be too high for small data sets. If you use small variable-size data
sets or data that does not change size at run time, disable dynamic memory
allocation. See “Control Dynamic Memory Allocation” on page 19-99.

You can control memory allocation globally for your application by modifying
the dynamic memory allocation threshold. See “Generate Code for a MATLAB
Function That Expands a Vector in a Loop” on page 19-103. You can control
memory allocation for individual variables by specifying upper bounds. See
“Specifying Upper Bounds for Variable-Size Data” on page 7-6.

7-5

7 Code Generation for Variable-Size Data

Specify Variable-Size Data Without Dynamic Memory
Allocation

In this section...

“Fixing Upper Bounds Errors” on page 7-6

“Specifying Upper Bounds for Variable-Size Data” on page 7-6

Fixing Upper Bounds Errors
If MATLAB cannot determine or compute the upper bound, you must specify
an upper bound. See “Specifying Upper Bounds for Variable-Size Data” on
page 7-6 and “Diagnosing and Fixing Errors in Detecting Upper Bounds”
on page 7-25

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 7-6

• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs”
on page 7-6

• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 7-7

• “Specifying Upper Bounds for Local Variable-Size Data” on page 7-7

• “Using a Matrix Constructor with Nonconstant Dimensions” on page 7-8

When to Specify Upper Bounds for Variable-Size Data
When using static allocation on the stack during code generation, MATLAB
must be able to determine upper bounds for variable-size data. Specify the
upper bounds explicitly for variable-size data from external sources, such
as inputs and outputs.

Specifying Upper Bounds on the Command Line for
Variable-Size Inputs
Use the coder.typeof construct with the -args option on the codegen
command line (requires a MATLAB Coder license). For example:

7-6

Specify Variable-Size Data Without Dynamic Memory Allocation

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real
doubles with two variable dimensions. The upper bound for the first
dimension is 3; the upper bound for the second dimension is 100. For a
detailed explanation of this syntax, see coder.typeof.

Specifying Unknown Upper Bounds for Variable-Size Inputs
If you use dynamic memory allocation, you can specify that you don’t know
the upper bounds of inputs. To specify an unknown upper bound, use the
infinity constant Inf in place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without
an upper bound.

Specifying Upper Bounds for Local Variable-Size Data
When using static allocation, MATLAB uses a sophisticated analysis to
calculate the upper bounds of local data at compile time. However, when the
analysis fails to detect an upper bound or calculates an upper bound that is
not precise enough for your application, you need to specify upper bounds
explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on
the heap. In this case, MATLAB assumes all variable-size data is unbounded
and does not attempt to determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data. Use the assert function with relational operators to
constrain the value of variables that specify the dimensions of variable-size
data. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

7-7

7 Code Generation for Variable-Size Data

This assert statement constrains input n to a maximum size of 5, defining L
and M as variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable.
Use the coder.varsize function to specify the upper bounds for all instances
of a local variable in a function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each
instance of the variable specified in the first argument. In this example, the
argument [1 10] indicates that for every instance of Y:

• First dimension is fixed at size 1

• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

7-8

Specify Variable-Size Data Without Dynamic Memory Allocation

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

7-9

7 Code Generation for Variable-Size Data

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 7-10

“How Size Appears in Code Generation Reports” on page 7-11

“How to Generate a Code Generation Report” on page 7-11

What Reports Tell You About Size
Code generation reports:

• Differentiate fixed-size from variable-size data

• Identify variable-size data with unknown upper bounds

• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but
the size of its dimensions does not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

7-10

Variable-Size Data in Code Generation Reports

How Size Appears in Code Generation Reports

�������	�
����
���	����
��������������
����

�������������������
�����	�������	���

���������	�
����
���	����
������
����������

 �����	�!"�!�#������������#��	�
����
���	����

�!�	�
	�$���!�#��������!	������	���	

How to Generate a Code Generation Report
Add the -report option to your codegen command.

7-11

7 Code Generation for Variable-Size Data

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 7-12

“Using a Matrix Constructor with Nonconstant Dimensions” on page 7-13

“Inferring Variable Size from Multiple Assignments” on page 7-13

“Defining Variable-Size Data Explicitly Using coder.varsize” on page 7-14

When to Define Variable-Size Data Explicitly
For code generation, you must assign variables to have a specific class,
size, and complexity before using them in operations or returning them as
outputs. Generally, you cannot reassign variable properties after the initial
assignment. Therefore, attempts to grow a variable or structure field after
assigning it a fixed size might cause a compilation error. In these cases, you
must explicitly define the data as variable sized using one of these methods:

Method See

Assign the data from a variable-size
matrix constructor such as
• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
7-13

Assign multiple, constant sizes
to the same variable before using
(reading) the variable.

“Inferring Variable Size from
Multiple Assignments” on page 7-13

Define all instances of a variable to
be variable sized

“Defining Variable-Size Data
Explicitly Using coder.varsize” on
page 7-14

7-12

Define Variable-Size Data for Code Generation

Using a Matrix Constructor with Nonconstant
Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

Inferring Variable Size from Multiple Assignments
You can define variable-size data by assigning multiple, constant sizes to the
same variable before you use (read) the variable in your code. When MATLAB
uses static allocation on the stack for code generation, it infers the upper
bounds from the largest size specified for each dimension. When you assign
the same size to a given dimension across all assignments, MATLAB assumes
that the dimension is fixed at that size. The assignments can specify different
shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper
bounds; it assumes all variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different
Shapes

function y = var_by_multiassign(u) %#codegen
if (u > 0)

y = ones(3,4,5);
else

y = zeros(3,1);
end

When static allocation is used, this function infers that y is a matrix with
three dimensions, where:

• First dimension is fixed at size 3

7-13

7 Code Generation for Variable-Size Data

• Second dimension is variable with an upper bound of 4

• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of
y differently:

• First dimension is fixed at size 3

• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like
this:

Defining Variable-Size Data Explicitly Using
coder.varsize
Use the function coder.varsize to define one or more variables or structure
fields as variable-size data. Optionally, you can also specify which dimensions
vary along with their upper bounds (see “Specifying Which Dimensions Vary”
on page 7-15). For example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an
upper bound of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

7-14

Define Variable-Size Data for Code Generation

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all
dimensions of B can vary and that the upper bound is size(B).

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary
You can use the function coder.varsize to specify which dimensions vary.
For example, the following statement defines B as a row vector whose first
dimension is fixed at 2, but whose second dimension can grow to an upper
bound of 16:

coder.varsize('B', [2, 16], [0 1])

The third argument specifies which dimensions vary. This argument must be
a logical vector or a double vector containing only zeros and ones. Dimensions
that correspond to zeros or false have fixed size; dimensions that correspond
to ones or true vary in size. coder.varsize usually treats dimensions of size
1 as fixed (see “Defining Variable-Size Matrices with Singleton Dimensions”
on page 7-16).

For more information about the syntax, see the coder.varsize reference
page.

Allowing a Variable to Grow After Defining Fixed Dimensions
Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first
use (where the statement Y = Y + u reads from Y). However, coder.varsize
defines Y as a variable-size matrix, allowing it to change size based on decision
logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

Y = zeros(2,2);
coder.varsize('Y');
if (u < 10)

Y = Y + u;
end

else

7-15

7 Code Generation for Variable-Size Data

Y = zeros(5,5);
end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix
and generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions
A singleton dimension is any dimension for which size(A,dim) = 1. Singleton
dimensions are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize
expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y 3];
else

Y = [Y u];
end

• You initialize variable-size data with singleton dimensions using matrix
constructor expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only
their second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)

Y = [Y u];
else

X = [X u];
end

7-16

Define Variable-Size Data for Code Generation

You can override this behavior by using coder.varsize to specify explicitly
that singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

In this example, the third argument of coder.varsize is a vector of ones,
indicating that each dimension of Y varies in size. For more information, see
the coder.varsize reference page.

Defining Variable-Size Structure Fields
To define structure fields as variable-size arrays, use colon (:) as the index
expression. The colon (:) indicates that all elements of the array are variable
sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

y = 0;
for i = 1:numel(data)

if data(i).color > 0
y = y + sum(data(i).values);

end;
end

7-17

7 Code Generation for Variable-Size Data

The expression coder.varsize('data(:).values') defines the field values
inside each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each
element of matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each
element of matrix data to be variable sized.

7-18

C Code Interface for Arrays

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 7-19

“C Code Interface for Dynamically Allocated Arrays” on page 7-20

“Utility Functions for Creating emxArray Data Structures” on page 7-21

C Code Interface for Statically Allocated Arrays
In generated code, MATLAB contains two pieces of information about
statically allocated arrays: the maximum size of the array and its actual size.

For example, consider the MATLAB function uniquetol:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B');
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Generate code for uniquetol specifying that input A is a variable-size real
double vector whose first dimension is fixed at 1 and second dimension can
vary up to 100 elements.

codegen -config:lib -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void uniquetol(const real_T A_data[100], const int32_T A_size[2],...
real_T tol, emxArray_real_T *B);

7-19

7 Code Generation for Variable-Size Data

There are two pieces of information about A:

• real_T A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int32_T_A_sizes[2]: the actual size of the input.

C Code Interface for Dynamically Allocated Arrays
In generated code, MATLAB represents dynamically allocated data as a
structure type called emxArray. An embeddable version of the MATLAB
mxArray, the emxArray is a family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypeName>
{

<baseTypeName> *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_<baseTypeName>;

For example, here’s the definition for an emxArray of base type real_T with
unknown upper bounds:

typedef struct emxArray_real_T
{

real_T *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_real_T;

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

7-20

C Code Interface for Arrays

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseTypeName>

*size Pointer to first element of size vector. Length
of the vector equals the number of dimensions.

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory

canFreeData Boolean flag indicating how to deallocate
memory:
• true – MATLAB deallocates memory
automatically

• false – Calling program determines when
to deallocate memory

Utility Functions for Creating emxArray Data
Structures
When you generate code that uses variable-size data, the code generation
software exports a set of utility functions that you can use to create and
interact with emxArrays in your generated code. To call these functions in
your main C function, include the generated header file. For example, when
you generate code for function foo, include foo_emxAPI.h in your main C
function. For more information, see the “Write a C Main Function” section
in “Using Dynamic Memory Allocation for an "Atoms" Simulation” on page
19-110.

7-21

7 Code Generation for Variable-Size Data

Function Arguments Description

emxArray_<baseTypeName>
*emxCreateWrapper_<baseTypeName>
(...)

*data
num_rows
num_cols

Creates a new
2-dimensional
emxArray, but does not
allocate it on the heap.
Instead uses memory
provided by the user
and sets canFreeData
to false so it never
inadvertently free user
memory, such as the
stack.

emxArray_<baseTypeName>
*emxCreateWrapperND_<baseTypeName>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseTypeName>
*emxCreate_<baseTypeName> (...)

num_rows
num_cols

Creates a new
two-dimensional
emxArray on the heap,
initialized to zero. All
data elements have the
data type specified by
baseTypeName.

emxArray_<baseTypeName>
*emxCreateND_<baseTypeName> (...)

numDimensions
*size

Same as emxCreate,
except it creates a
new N-dimensional
emxArray on the heap.

emxArray_<baseTypeName>
*emxDestroyArray_<baseTypeName>
(...)

*emxArray Frees dynamic
memory allocated
by *emxCreate
and *emxCreateND
functions.

7-22

Troubleshooting Issues with Variable-Size Data

Troubleshooting Issues with Variable-Size Data

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 7-23

“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 7-25

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated
code. Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n<10);
B = ones(n,n);
A = magic(3);

7-23

7 Code Generation for Variable-Size Data

A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert
statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n==3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might
silently reshape the data in generated code to match a coder.varsize
specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize(`Y', [1 10]);

7-24

Troubleshooting Issues with Variable-Size Data

If u < 0
Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10
elements, so its first dimension is fixed at size 1. The statement Y = []
designates the first dimension of Y as 0, creating a mismatch. The right
hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y =
[] in generated code to Y = zeros(1,0) so it matches the coder.varsize
specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes.
Operands have different sizes if one has fixed dimensions and the other has
variable dimensions. For example:

function z = mismatch_operands(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed
dimensions (3 x 3), but x has variable dimensions. Fix this problem by using
explicit indexing to make x the same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper
Bounds
Check your code for these issues:

7-25

7 Code Generation for Variable-Size Data

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with
nonconstant dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not
specify an upper bound for u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation,
MATLAB does not check for upper bounds when it uses dynamic memory
allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert
statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

7-26

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Incompatibilities with MATLAB in Variable-Size Support
for Code Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 7-27

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 7-29

“Incompatibility with MATLAB in Determining Size of Empty Arrays” on
page 7-30

“Incompatibility with MATLAB in Vector-Vector Indexing” on page 7-31

“Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 7-32

“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks”
on page 7-33

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. Except for some matrix operators,
MATLAB arithmetic operators work on corresponding elements of arrays with
equal dimensions. For vectors and rectangular arrays, both operands must be
the same size unless one is a scalar. If one operand is a scalar and the other is
not, MATLAB applies the scalar to every element of the other operand—this
property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules
apply except when operating on two variable-size expressions. In this case,
both operands must be the same size. The generated code does not perform
scalar expansion even if one of the variable-size expressions turns out to be
scalar at run time. Instead, it generates a size mismatch error at run time
for MEX functions. For non-MEX builds, there is no run-time error checking;
the generated code will have unspecified behavior.

For example, in the following function, z is scalar for the switch statement
case 0 and case 1. MATLAB applies scalar expansion when evaluating
y(:) = z; for these two cases.

7-27

7 Code Generation for Variable-Size Data

function y = scalar_exp_test_err1(u) %#codegen
for the otherwise case of the switch function.y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z;

When you generate code for this function, the code generation software
determines that z is variable size with an upper bound of 3.

If you run the MEX function with u equal to zero or one, even though z is
scalar at run time, the generated code does not perform scalar expansion
and a run-time error occurs.

scalar_exp_test_err1_mex(0)
Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

7-28

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Workaround
Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result in
generated code than in MATLAB. In generated code, size(A) always returns
a fixed-length output because it does not drop trailing singleton dimensions
of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A)
returns:

• Three-element vector in generated code

• Two-element vector in MATLAB code

Workarounds
If your application requires generated code to return the same size of
variable-size N-D arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) always returns the same answer in generated code
and MATLAB code.

7-29

7 Code Generation for Variable-Size Data

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot
pass a variable-size X to matrix constructors such as zeros that require a
fixed-size argument.

Incompatibility with MATLAB in Determining Size of
Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. The size might be 1x0 or 0x1 in generated code,
but 0x0 in MATLAB. Therefore, you should not write code that relies on the
specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = [];
end
y=size(x);
end

Concatenation requires its operands to match on the size of the dimension
that is not being concatenated. In the preceding concatenation the scalar
value has size 1x1 and x has size 0x0. To support this use case, the code
generation software determines the size for x as [1 x :?]. Because there
is another assignment x = [] after the concatenation, the size of x in the
generated code is 1x0 instead of 0x0.

7-30

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Workaround
If your application checks whether a matrix is empty, use one of these
workarounds:

• Rewrite your code to use the isempty function instead of the size function.

• Instead of using x=[] to create empty arrays, create empty arrays of a
specific size using zeros. For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Vector-Vector
Indexing
In vector-vector indexing, you use one vector as an index into another vector.
When either vector is variable sized, you might get a run-time error during
code generation. Consider the index expression A(B). The general rule for
indexing is that size(A(B)) == size(B). However, when both A and B are
vectors, MATLAB applies a special rule: use the orientation of A as the
orientation of the output. For example, if size(A) == [1 5] and size(B) ==
[3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are
vectors at compile time, it applies the special rule and gives the same result
as MATLAB. However, if either A or B is a variable-size matrix (has shape
?x?) at compile time, the code generation software applies only the general
indexing rule. Then, if both A and B become vectors at run time, the code
generation software reports a run-time error when you run the MEX function.
For non-MEX builds, there is no run-time error checking; the generated code

7-31

7 Code Generation for Variable-Size Data

will have unspecified behavior. It is best practice to generate and test a MEX
function before generating C code.

Workaround
Force your data to be a vector by using the colon operator for indexing:
A(B(:)). For example, suppose your code intentionally toggles between
vectors and regular matrices at run time. You can do an explicit check for
vector-vector indexing:

...
if isvector(A) && isvector(B)

C = A(:);
D = C(B(:));

else
D = A(B);

end
...

The indexing in the first branch specifies that C and B(:) are compile-time
vectors. As a result, the code generation software applies the standard
vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation
The following limitation applies to matrix indexing operations for code
generation:

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation
does not support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M=zeros(1,10);

7-32

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

for i = 1:10
M(i) = 5;

end

The following limitation applies to matrix indexing operations for code
generation when dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is never dynamically allocated for the size
of the expressions that change as the program executes. To implement this
behavior, use for-loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

Dynamic Memory Allocation Not Supported for
MATLAB Function Blocks
You cannot use dynamic memory allocation for variable-size data in MATLAB
Function blocks. Use bounded instead of unbounded variable-size data.

7-33

7 Code Generation for Variable-Size Data

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation

In this section...

“Common Restrictions” on page 7-34

“Toolbox Functions with Variable Sizing Restrictions” on page 7-35

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but
only for code generation. To determine which of these restrictions apply to
specific library functions, see the table in “Toolbox Functions with Variable
Sizing Restrictions” on page 7-35.

Variable-length vector restriction
Inputs to the library function must be variable-length vectors or fixed-size
vectors. A variable-length vector is a variable-size array that has the shape
1x:n or :nx1 (one dimension is variable sized and the other is fixed at size 1).
Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction
When the function selects the working dimension automatically, it bases the
selection on the upper bounds for the dimension sizes. In the case of the sum
function, sum(X) selects its working dimension automatically, while sum(X,
dim) uses dim as the explicit working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x)
behaves like sum(X,2) in generated code. In MATLAB, it behaves like
sum(X,2) provided size(X,2) is not 1. In MATLAB, when size(X,2) is 1,
sum(X) behaves like sum(X,3). Consequently, you get a run-time error if an
automatically selected working dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as
a constant value.

7-34

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Array-to-vector restriction
The function issues an error when a variable-size array that is not a
variable-length vector assumes the shape of a vector at run time. To avoid
the issue, specify the input explicitly as a variable-length vector instead of
a variable-size array.

Array-to-scalar restriction
The function issues an error if a variable-size array assumes a scalar value at
run time. To avoid this issue, specify all scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions
The following restrictions apply to specific toolbox functions, but only for
code generation.

Function Restrictions with Variable-Size Data

all
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun
• Dimensions expand only where one input array
or the other has a fixed length of 1.

cat
• Dimension argument must be a constant.

• An error occurs if variable-size inputs are
empty at run time.

7-35

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

conv
• See “Variable-length vector restriction” on page
7-34.

• Input vectors must have the same orientation,
either both row vectors or both column vectors.

cov
• For cov(X), see“Array-to-vector restriction” on
page 7-35.

cross
• Variable-size array inputs that become vectors
at run time must have the same orientation.

deconv
• For both arguments, see“Variable-length vector
restriction” on page 7-34.

detrend
• For first argument for row vectors only, see
“Array-to-vector restriction” on page 7-35 .

diag
• See “Array-to-vector restriction” on page 7-35 .

diff
• See “Automatic dimension restriction” on page
7-34.

• Length of the working dimension must be
greater than the difference order input when
the input is variable sized. For example, if the
input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1)
generates a run-time error.

fft
• See “Automatic dimension restriction” on page
7-34.

7-36

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

filter
• For first and second arguments, see
“Variable-length vector restriction” on page
7-34.

• See “Automatic dimension restriction” on page
7-34.

hist
• For second argument, see “Variable-length
vector restriction” on page 7-34.

• For second input argument, see“Array-to-scalar
restriction” on page 7-35.

histc
• See “Automatic dimension restriction” on page
7-34.

ifft
• See “Automatic dimension restriction” on page
7-34.

ind2sub
• First input (the size vector input) must be fixed
size.

interp1
• For the Y input and xi input, see“Array-to-vector
restriction” on page 7-35.

• Y input can become a column vector dynamically.

• A run-time error occurs if Y input is not a
variable-length vector and becomes a row vector
at run time.

ipermute
• Order input must be fixed size.

issorted
• For optional rows input, see “Variable-length
vector restriction” on page 7-34.

7-37

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

magic
• Argument must be a constant.

• Output can be fixed-size matrices only.

max
• See “Automatic dimension restriction” on page
7-34.

mean
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

median
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

min
• See “Automatic dimension restriction” on page
7-34.

mode
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

7-38

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

mtimes
• When an input is variable sized, MATLAB
determines whether to generate code for a
general matrix*matrix multiplication or a
scalar*matrix multiplication, based on whether
one of the arguments is a fixed-size scalar. If
neither argument is a fixed-size scalar, the
inner dimensions of the two arguments must
agree even if a variable-size matrix input
happens to be a scalar at run time.

nchoosek
• Inputs must be fixed sized.

• Second input must be a constant for static
allocation. If you enable dynamic allocation,
second input can be a variable.

• You cannot create a variable-size array by
passing in a variable k unless you enable
dynamic allocation.

permute
• Order input must be fixed size.

planerot
• Input must be a fixed-size, two-element column
vector. It cannot be a variable-size array that
takes on the size 2-by-1 at run time.

poly
• See “Variable-length vector restriction” on page
7-34.

polyfit
• For first and second arguments, see
“Variable-length vector restriction” on page
7-34.

7-39

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

prod
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

rand
• For an upper-bounded variable N, rand(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, rand([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randn
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

reshape
• When the input is a variable-size empty array,
the maximum dimension size of the output
array (also empty) cannot be larger than that
of the input.

roots
• See “Variable-length vector restriction” on page
7-34.

7-40

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

shiftdim
• If you do not supply the second argument, the
number of shifts is determined at compilation
time by the upper bounds of the dimension
sizes. Consequently, at run time the number of
shifts is always constant.

• An error occurs if the dimension that is shifted
to the first dimension has length 1 at run
time. To avoid the error, supply the number of
shifts as the second input argument (must be a
constant).

• First input argument must always have the
same number of dimensions when you supply a
positive number of shifts.

std
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

sub2ind
• First input (the size vector input) must be fixed
size.

sum
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

trapz
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

7-41

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

typecast
• See “Variable-length vector restriction” on page
7-34 on first argument.

var
• See “Automatic dimension restriction” on page
7-34.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

7-42

8

Code Generation for
MATLAB Structures

• “Structure Definition for Code Generation” on page 8-2

• “Structure Operations Allowed for Code Generation” on page 8-3

• “Define Scalar Structures for Code Generation” on page 8-4

• “Define Arrays of Structures for Code Generation” on page 8-7

• “Make Structures Persistent” on page 8-9

• “Index Substructures and Fields” on page 8-10

• “Assign Values to Structures and Fields” on page 8-12

• “Pass Large Structures as Input Parameters” on page 8-13

8 Code Generation for MATLAB Structures

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use
structures differently than you normally would when running your code in
the MATLAB environment:

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 8-3

Observe restrictions on properties
and values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 8-4

Make structures uniform in arrays. “Define Arrays of Structures for
Code Generation” on page 8-7

Reference structure fields
individually during indexing.

“Index Substructures and Fields” on
page 8-10

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and
Fields” on page 8-12

8-2

Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are
restricted to the following operations:

• Define structures as local and persistent variables by assignment and
using the struct function

• Index structure fields using dot notation

• Define primary function inputs as structures

• Pass structures to local functions

8-3

8 Code Generation for MATLAB Structures

Define Scalar Structures for Code Generation

In this section...

“Restrictions When Using struct” on page 8-4

“Restrictions When Defining Scalar Structures by Assignment” on page 8-4

“Adding Fields in Consistent Order on Each Control Flow Path” on page 8-4

“Restriction on Adding New Fields After First Use” on page 8-5

Restrictions When Using struct
When you use the struct function to create scalar structures for code
generation, the following restrictions apply:

• Field arguments must be scalar values.

• You cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by
Assignment
When you define a scalar structure by assigning a variable to a preexisting
structure, you do not need to define the variable before the assignment.
However, if you already defined that variable, it must have the same class,
size, and complexity as the structure you assign to it. In the following
example, p is defined as a structure that has the same properties as the
predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control
Flow Path
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler
error because it adds the fields of structure x in a different order in each
if statement clause:

8-4

Define Scalar Structures for Code Generation

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform any of the following
operations on the structure:

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

8-5

8 Code Generation for MATLAB Structures

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

8-6

Define Arrays of Structures for Code Generation

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 8-7

“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 8-7

“Defining an Array of Structures Using Concatenation” on page 8-8

Ensuring Consistency of Fields
When you create an array of MATLAB structures with the intent of
generating code, you must be sure that each structure field in the array has
the same size, type, and complexity.

Using repmat to Define an Array of Structures with
Consistent Field Properties
You can create an array of structures from a scalar structure by using the
MATLAB repmat function, which replicates and tiles an existing scalar
structure:

1 Create a scalar structure, as described in “Define Scalar Structures for
Code Generation” on page 8-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures.
Each element of the array is defined by the structure s, which has two fields,
a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;

8-7

8 Code Generation for MATLAB Structures

X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator,
square brackets ([]), to join one or more structures into an array (see
“Concatenating Matrices”). For code generation, all the structures that you
concatenate must have the same size, class, and complexity.

For example, the following code uses concatenation and a local function to
create the elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

8-8

Make Structures Persistent

Make Structures Persistent
To make structures persist, you define them to be persistent variables and
initialize them with the isempty statement, as described in “Define and
Initialize Persistent Variables” on page 5-10.

For example, the following function defines structure X to be persistent and
initializes its fields a and b:

function f(u) %#codegen
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

8-9

8 Code Generation for MATLAB Structures

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code
generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields
and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by
resolving symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1

substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure
substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...

8-10

Index Substructures and Fields

y = X(1).a % Extracts the value of field a
% of the first structure in array X

...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each
with two fields a and b as defined by s. See “Define Arrays of Structures for
Code Generation” on page 8-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at run time
(see “Generate Field Names from Variables”).

8-11

8 Code Generation for MATLAB Structures

Assign Values to Structures and Fields
Use these guidelines when assigning values to a structure, substructure,
or field for code generation:

Field properties must be consistent across structure-to-structure
assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a
substructure of a different structure
and vice versa.

Define the structure with the same
number, type, and size of fields as
the substructure.

Assigning an element of one
structure to an element of another
structure.

The elements must have the same
type and size.

Do not use field values as constants

The values stored in the fields of a structure are not treated as constant values
in generated code. Therefore, you cannot use field values to set the size or
class of other data. For example, the following code generates a compiler error:

...
Y.a = 3;
X = zeros(Y.a); % Generates an error

In this example, even though you set field a of structure Y to the value 3, Y.a
is not a constant in generated code and, therefore, it is not a valid argument
to pass to the function zeros.

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to
known types before code generation (see “Working with mxArrays” on page
13-17).

8-12

Pass Large Structures as Input Parameters

Pass Large Structures as Input Parameters
If you generate a MEX function for a MATLAB function that takes a large
structure as an input parameter, for example, a structure containing fields
that are matrices, the MEX function might fail to load. This load failure
occurs because, when you generate a MEX function from a MATLAB function
that has input parameters, the code generation software allocates memory for
these input parameters on the stack. To avoid this issue, pass the structure
by reference to the MATLAB function. For example, if the original function
signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

8-13

8 Code Generation for MATLAB Structures

8-14

9

Code Generation for
Enumerated Data

• “Enumerated Data Definition for Code Generation” on page 9-2

• “Enumerated Types Supported for Code Generation” on page 9-3

• “When to Use Enumerated Data for Code Generation” on page 9-5

• “Generate Code for Enumerated Data from MATLAB Algorithms” on page
9-6

• “Define Enumerated Data for Code Generation” on page 9-8

• “Instantiate Enumerated Types for Code Generation” on page 9-10

• “Operations on Enumerated Data Allowed for Code Generation” on page
9-11

• “Include Enumerated Data in Control Flow Statements” on page 9-14

• “Customize Enumerated Types Based on int32” on page 9-20

• “Control Names of Enumerated Type Values in Generated Code” on page
9-26

• “Change and Reload Enumerated Data Types” on page 9-28

• “Restrictions on Use of Enumerated Data in for-Loops” on page 9-29

• “Toolbox Functions That Support Enumerated Types for Code Generation”
on page 9-30

9 Code Generation for Enumerated Data

Enumerated Data Definition for Code Generation
To generate efficient standalone code for enumerated data, you must define
and use enumerated types differently than you normally would when running
your code in the MATLAB environment:

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported for
Code Generation” on page 9-3

Name of each enumerated data type
must be unique

“Naming Enumerated Types for
Code Generation” on page 9-9

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“Define Enumerated Data for Code
Generation” on page 9-8 and “How
to Generate Code for Enumerated
Data” on page 9-6

Restricted set of operations “Operations on Enumerated Data
Allowed for Code Generation” on
page 9-11

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 9-29

9-2

Enumerated Types Supported for Code Generation

Enumerated Types Supported for Code Generation

Enumerated Type Based on int32
This enumerated data type is based on the built-in type int32. Use this
enumerated type when generating code from MATLAB algorithms.

Syntax

classdef(Enumeration) type_name < int32

Example

classdef(Enumeration) PrimaryColors < int32
enumeration

Red(1),
Blue(2),
Yellow(4)

end
end

In this example, the statement classdef(Enumeration) PrimaryColors
< int32 means that the enumerated type PrimaryColors is based on the
built-in type int32. As such, PrimaryColors inherits the characteristics
of the int32 type, as well as defining its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values:

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(1) Red 1

Blue(2) Blue 2

Yellow(4) Yellow 4

How to Use
Define enumerated data in MATLAB code and compile the source file. For
example, to generate C/C++ code from your MATLAB source, you can use

9-3

9 Code Generation for Enumerated Data

codegen, as described in “Generate Code for Enumerated Data from MATLAB
Algorithms” on page 9-6.

Note codegen requires a MATLAB Coder license.

9-4

When to Use Enumerated Data for Code Generation

When to Use Enumerated Data for Code Generation
You can use enumerated types to represent program states and to control
program logic, especially when you need to restrict data to a finite set of
values and refer to these values by name. Even though you can sometimes
achieve these goals by using integers or strings, enumerated types offer the
following advantages:

• Provide more readable code than integers

• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated
type, you get a compile-time error that the element does not belong to the
set of allowable values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than
comparisons of strings.

9-5

9 Code Generation for Enumerated Data

Generate Code for Enumerated Data from MATLAB
Algorithms

Step Action How?

1
Define an enumerated data type
that inherits from int32.

See “Define Enumerated Data for
Code Generation” on page 9-8.

2
Instantiate the enumerated type
in your MATLAB algorithm.

See “Instantiate Enumerated
Types for Code Generation” on
page 9-10.

3
Compile the function with
codegen.

See “How to Generate Code for
Enumerated Data” on page 9-6.

This workflow requires a MATLAB Coder license.

How to Generate Code for Enumerated Data
Use the command codegen to generate MEX, C, or C++ code from the
MATLAB algorithm that contains the enumerated data (requires a MATLAB
Coder license). Each enumerated data type must be defined on the MATLAB
path in a separate file as a class derived from the built-in type int32. See
“Define Enumerated Data for Code Generation” on page 9-8.

If your function has inputs, you must specify the properties of these inputs
to codegen. For an enumerated data input, use the -args option to pass
one of its allowable values as a sample value. For example, the following
codegen command specifies that the function displayState takes one input
of enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

After executing this command, codegen generates a platform-specific MEX
function that you can test in MATLAB. For example, to test displayState,
type the following command:

displayState(sysMode.OFF)

You should get the following result:

9-6

Generate Code for Enumerated Data from MATLAB® Algorithms

ans =

RED

9-7

9 Code Generation for Enumerated Data

Define Enumerated Data for Code Generation
Follow these steps to define enumerated data for code generation from
MATLAB algorithms:

1 Create a class definition file.

In the MATLAB Command Window, select File > New > Class.

2 Enter the class definition as follows:

classdef(Enumeration) EnumTypeName < int32

For example, the following code defines an enumerated type called sysMode:

classdef(Enumeration) sysMode < int32
...

end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. It must inherit from the
built-in type int32.

3 Define enumerated values in an enumeration section as follows:

classdef(Enumeration) EnumTypeName < int32
enumeration

EnumName(N)
...

end
end

For example, the following code defines a set of two values for enumerated
type sysMode:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end

end

9-8

Define Enumerated Data for Code Generation

An enumerated type can define any number of values. Each enumerated
value consists of a string EnumName and an underlying integer N. Each
EnumName must be unique within its type, but can also appear in other
enumerated types. The underlying integers need not be either consecutive
or ordered, nor must they be unique within the type or across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type.
The match is case sensitive.

To add a folder to the MATLAB search path, type addpath pathname at
the MATLAB command prompt. For more information, see “Using the
MATLAB Search Path”, addpath, and savepath.

For examples of enumerated data type definitions, see “Define Enumerated
Data for Code Generation” on page 9-8.

Naming Enumerated Types for Code Generation
You must use a unique name for each enumerated data type. The name of an
enumerated data type cannot match the name of a toolbox function supported
for code generation, or another data type or a variable in the MATLAB base
workspace. Otherwise, a name conflict occurs.

For example, you cannot name an enumerated data type mode because
MATLAB for code generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see “Functions
Supported for Code Generation — Alphabetical List” on page 4-2.

9-9

9 Code Generation for Enumerated Data

Instantiate Enumerated Types for Code Generation
To instantiate an enumerated type for code generation from MATLAB
algorithms, use dot notation to specify ClassName.EnumName. For an example,
see “Include Enumerated Data in Control Flow Statements” on page 9-14.

9-10

Operations on Enumerated Data Allowed for Code Generation

Operations on Enumerated Data Allowed for Code
Generation

To generate efficient standalone code for enumerated data, you are restricted
to the following operations. The examples are based on the definitions of
the enumeration type LEDcolor described in “Class Definition: LEDcolor”
on page 9-14.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN
xoff = LEDcolor.RED

xon =

GREEN
xoff =

RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

0

xon <= xoff ans =

1

xon > xoff ans =

0

9-11

9 Code Generation for Enumerated Data

Cast Operation

Example Result

double(LEDcolor.RED) ans =

2

z = 2
y = LEDcolor(z)

z =

2

y =

RED

Indexing Operation

Example Result

m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

m =

1 2

n =

GREEN RED

p =

GREEN

9-12

Operations on Enumerated Data Allowed for Code Generation

Control Flow Statements: if, switch, while

Statement Example Executable
Example

if
if state == sysMode.ON

led = LEDcolor.GREEN;
else

led = LEDcolor.RED;
end

“if Statement with
Enumerated Data
Types” on page
9-14

switch
switch button

case VCRButton.Stop
state = VCRState.Stop;

case VCRButton.PlayOrPause
state = VCRState.Play;

case VCRButton.Next
state = VCRState.Forward;

case VCRButton.Previous
state = VCRState.Rewind;

otherwise
state = VCRState.Stop;

end

“switch Statement
with Enumerated
Data Types” on
page 9-15

while
while state ~= State.Ready

switch state
case State.Standby

initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

“while Statement
with Enumerated
Data Types” on
page 9-18

9-13

9 Code Generation for Enumerated Data

Include Enumerated Data in Control Flow Statements
The following control statements work with enumerated operands in
generated code. However, there are restrictions (see “Restrictions on Use of
Enumerated Data in for-Loops” on page 9-29).

if Statement with Enumerated Data Types
This example is based on the definition of the enumeration types LEDcolor
and sysMode. The function displayState uses these enumerated data types
to activate an LED display.

Class Definition: sysMode

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

MATLAB Function: displayState
This function uses enumerated data to activate an LED display, based on the
state of a device. It lights a green LED display to indicate the ON state and
lights a red LED display to indicate the OFF state.

9-14

Include Enumerated Data in Control Flow Statements

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass
one of the allowable values for the enumerated data input as a sample
value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

switch Statement with Enumerated Data Types
This example is based on the definition of the enumeration types VCRState
and VCRButton. The function VCR uses these enumerated data types to set
the state of the VCR.

Class Definition: VCRState

classdef(Enumeration) VCRState < int32
enumeration

Stop(0),
Pause(1),
Play(2),
Forward(3),

9-15

9 Code Generation for Enumerated Data

Rewind(4)
end

end

This definition must reside on the MATLAB path in a file with the same
name as the class, VCRState.m.

Class Definition: VCRButton

classdef(Enumeration) VCRButton < int32
enumeration

Stop(1),
PlayOrPause(2),
Next(3),
Previous(4)

end
end

This definition must reside on the MATLAB path in a file with the same name
as the class, VCRButton.m.

MATLAB Function: VCR
This function uses enumerated data to set the state of a VCR, based on the
initial state of the VCR and the state of the VCR button.

function s = VCR(button)
%#codegen

persistent state

if isempty(state)
state = VCRState.Stop;

end

switch state
case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

state = handleDefault(button);
case VCRState.Play

switch button

9-16

Include Enumerated Data in Control Flow Statements

case VCRButton.PlayOrPause, state = VCRState.Pause;
otherwise, state = handleDefault(button);

end
case VCRState.Pause

switch button
case VCRButton.PlayOrPause, state = VCRState.Play;
otherwise, state = handleDefault(button);

end
end
s = state;

function state = handleDefault(button)
switch button

case VCRButton.Stop, state = VCRState.Stop;
case VCRButton.PlayOrPause, state = VCRState.Play;
case VCRButton.Next, state = VCRState.Forward;
case VCRButton.Previous, state = VCRState.Rewind;
otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

You should get the following result:

s =

Stop

9-17

9 Code Generation for Enumerated Data

while Statement with Enumerated Data Types
This example is based on the definition of the enumeration type State. The
function Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef(Enumeration) State < int32
enumeration

Standby(0),
Boot(1),
Ready(2)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, State.m.

MATLAB Function: Setup
The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)
%#codegen

state = initState;

if isempty(state)
state = State.Standby;

end

while state ~= State.Ready
switch state

case State.Standby
initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

9-18

Include Enumerated Data in Control Flow Statements

s = state;

function initialize()
% Perform initialization.

function boot()
% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

You should get the following result:

s =

Ready

9-19

9 Code Generation for Enumerated Data

Customize Enumerated Types Based on int32

About Customizing Enumerated Types
You can customize an enumerated type by using the same techniques that
work with MATLAB classes, as described in Modifying Superclass Methods
and Properties. A primary source of customization are the methods associated
with an enumerated type.

Enumerated class definitions can include an optional methods section.
You can override the following methods to customize the behavior of an
enumerated type. To override a method, include a customized version of the
method in the methods section in the enumerated class definition. If you do
not want to override the inherited methods, omit the methods section.

9-20

Customize Enumerated Types Based on int32

Method Description Default Value
Returned or
Specified

When to Use

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

true — prefix is
used

If you do not want
the class name to
become a prefix
in the generated
code, override
this method to set
the return value
to false. See
“Control Names
of Enumerated
Type Values in
Generated Code” on
page 9-26.

getDefaultValue Returns the default
enumerated value.

'' If you want the
default value for the
enumerated type
to be something
other than the
first value listed
in the enumerated
class definition,
override this
method to specify a
default value. See
“Specify a Default
Enumerated Value”
on page 9-22.

9-21

9 Code Generation for Enumerated Data

Method Description Default Value
Returned or
Specified

When to Use

getHeaderFile Specifies the file
in which the
enumerated class
is defined for code
generation.

'' If you want to use
an enumerated
class definition
that is specified in
a custom header
file, override this
method to return
the path to this
header file. In
this case, the code
generation software
does not generate
the class definition.
See “Specify a
Header File” on
page 9-23

Specify a Default Enumerated Value
The code generation software and related generated code use an enumerated
data type’s default value when you provide no other initial value.

Unless you specify otherwise, the default value for an enumerated type is the
first value in the enumerated class definition. To specify a different default
value, add your own getDefaultValue method to the methods section. The
following code shows a shell for the getDefaultValue method:

function retVal = getDefaultValue()
% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated class.
% If this method is not defined, the first enumerated value is used.

retVal = ThisClass.EnumName;
end

To customize this method, provide a value for ThisClass.EnumName that
specifies the desired default.ThisClass must be the name of the class within

9-22

Customize Enumerated Types Based on int32

which the method exists. EnumName must be the name of an enumerated value
defined in that class. For example:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
methods (Static)
function y = getDefaultValue()

y = LEDcolor.RED;
end

end
end

This example defines the default as LEDcolor.RED. If this method does not
appear, the default value would be LEDcolor.GREEN, because that is the first
value listed in the enumerated class definition.

Specify a Header File
To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function y = getHeaderFile()
% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included where required in the code.
% Otherwise, the type is written out in the generated code.
y = 'filename';
end

Substitute any legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in the generated code with a #include statement
like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data

9-23

9 Code Generation for Enumerated Data

type. The file can also contain definitions of enumerated types that you do not
use in your MATLAB code.

For example, to use the definition of LEDcolor in my_LEDcolor.h:

1 Modify the definition of LEDcolor to override the getHeaderFile method
to return the name of the external header file:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end

methods(Static)
function y=getHeaderFile()

y='my_LEDcolor.h';
end

end
end

2 In the current folder, provide a header file, my_LEDcolor.h, that contains
the definition:

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

3 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

4 Click the View Report link.

9-24

Customize Enumerated Types Based on int32

5 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The header file contains a #include statement for the external header file.

#include "my_LEDcolor.h"

It does not include a declaration for the enumerated class.

9-25

9 Code Generation for Enumerated Data

Control Names of Enumerated Type Values in Generated
Code

This example shows how to control the name of enumerated type values in
code generated by MATLAB Coder. (Requires a MATLAB Coder license.)
The example uses the enumerated data type definitions and function
displayState described in “Include Enumerated Data in Control Flow
Statements” on page 9-14.

1 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

2 Click the View Report link.

3 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The report displays the header file containing the enumerated data type
definition.

typedef enum LEDcolor
{

LEDcolor_GREEN = 1,
LEDcolor_RED

} LEDcolor;

The enumerated value names include the class name prefix LEDcolor_.

4 Modify the definition of LEDcolor to override the
addClassNameToEnumNames method. Set the return value to false instead
of true so that the enumerated value names in the generated code do not
contain the class prefix.

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),

9-26

Control Names of Enumerated Type Values in Generated Code

RED(2),
end

methods(Static)
function y=addClassNameToEnumNames()

y=false;
end

end
end

5 Clear existing class instances:

clear classes

6 Generate code again.

codegen -config:lib -report displayState -args {sysMode.ON}

7 Open the code generation report and look at the enumerated type definition
in displayState_types.h.

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

This time the enumerated value names do not include the class name prefix.

For more information, see:

• codegen

• “Include Enumerated Data in Control Flow Statements” on page 9-14 for
a description of the example function displayState and its enumerated
type definitions

9-27

9 Code Generation for Enumerated Data

Change and Reload Enumerated Data Types
You can change the definition of an enumerated data type by editing and
saving the file that contains the definition. You do not need to inform
MATLAB that a class definition has changed. MATLAB automatically reads
the modified definition when you save the file. However, the class definition
changes do not take full effect if any class instances (enumerated values) exist
that reflect the previous class definition. Such instances might exist in the
base workspace or might be cached. The following table explains options for
removing instances of an enumerated data type from the base workspace
and cache.

If In Base Workspace... If In Cache...

Do one of the following:
• Locate and delete specific obsolete
instances.

• Delete the classes from the
workspace by using the clear
classes command. For more
information, see clear.

• Clear MEX functions that are
caching instances of the class.

9-28

Restrictions on Use of Enumerated Data in for-Loops

Restrictions on Use of Enumerated Data in for-Loops
Do not use enumerated data as the loop counter variable in for-
loops

To iterate over a range of enumerated data with consecutive values, you can
cast the enumerated data to int32 in the loop counter.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef(Enumeration) ColorCodes < int32
enumeration

Red(1),
Blue(2),
Green(3)
Yellow(4)
Purple(5)

end
end

Because the enumerated values are consecutive, you can use ColorCodes
data in a for-loop like this:

...
for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

c = ColorCodes(i);
...

end

9-29

9 Code Generation for Enumerated Data

Toolbox Functions That Support Enumerated Types for
Code Generation

The following MATLAB toolbox functions support enumerated types for code
generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• shiftdim

• sort

• sortrows

9-30

Toolbox Functions That Support Enumerated Types for Code Generation

• squeeze

9-31

9 Code Generation for Enumerated Data

9-32

10

Code Generation for
MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 10-2

• “Classes That Support Code Generation” on page 10-8

• “Memory Allocation Requirements” on page 10-9

• “Generate Code for MATLAB Value Classes” on page 10-10

• “Generate Code for MATLAB Handle Classes and System Objects” on
page 10-16

• “MATLAB Classes in Code Generation Reports” on page 10-19

• “Troubleshooting Issues with MATLAB Classes” on page 10-22

10 Code Generation for MATLAB Classes

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use
classes differently than you normally would when running your code in the
MATLAB environment.

What’s Different More Information

Class must be in a single file.
Because of this limitation, there is
no code generation support for a
class definition that uses an @-folder.

“Creating a Single, Self-Contained
Class Definition File”

Restricted set of language features. “Language Limitations” on page 10-2

Restricted set of code generation
features.

“Code Generation Features Not
Compatible with Classes” on page
10-4

Definition of class properties. “Defining Class Properties for Code
Generation” on page 10-5

Use of handle classes. “Generate Code for MATLAB Handle
Classes and System Objects” on page
10-16

Calls to base class constructor. “Calls to Base Class Constructor” on
page 10-6

Language Limitations
Although code generation support is provided for common features of classes
such as properties and methods, there are a number of advanced features
which are not supported, such as:

• Events

• Listeners

• Arrays of objects

• Recursive data structures

- Linked lists

10-2

MATLAB® Classes Definition for Code Generation

- Trees

- Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref,
subsassign, and subsindex methods. Code generation does not support
classes that have their own definitions of these methods.

• The empty method

In MATLAB, all classes have a built-in static method, empty, which creates
an empty array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

- addlistener

- delete

- eq

- findobj

- findprop

- ge

- gt

- isvalid

- le

- lt

- ne

- notify

• Diamond inheritance. If classes B and C both inherit from the same class
and class D inherits from both class B and C, you cannot generate code
for class D.

10-3

10 Code Generation for MATLAB Classes

Code Generation Features Not Compatible with
Classes

• You can generate code for entry-point MATLAB functions that use classes,
but you cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code
by executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a
MATLAB class, you cannot generate code for this function.

For example, if function foo takes one input, a, that is a MATLAB object,
you cannot generate code for foo by executing:

codegen foo -args {a}

• You cannot generate code for a value class that has a set.prop method.
For example, you cannot generate code for the following Square class
because of the set.side method.

classdef Square < Shape %#codegen
properties

side;
end
methods

function obj = Square(side)
obj = obj@Shape(side^2);
obj.side = side;

end
function set.side(obj,value)

obj.side = value;
obj.area = value^2;

end
end

end

To generate code for this class, modify the class definition to remove the
set.side method.

10-4

MATLAB® Classes Definition for Code Generation

• You cannot use coder.extrinsic to declare a class or method as extrinsic.

• You cannot pass a MATLAB class to the coder.ceval function.

• If you use classes in code in the MATLAB Function block, you cannot use
the debugger to view class information.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you
normally would when running your code in the MATLAB environment:

• If a class has a property of handle type, set the property in the class
constructor. For System objects, you can also use the setupImpl method.

• After defining a property, do not assign it an incompatible type. Do not use
a property before attempting to grow it.

When you define class properties for code generation, consider the same
factors that you take into account when defining variables. In the MATLAB
language, variables can change their class, size, or complexity dynamically
at run time so you can use the same variable to hold a value of any class,
size, or complexity. C and C++ use static typing. Before using variables,
to determine their type, the code generation software requires a complete
assignment to each variable. Similarly, before using any properties, you
must explicitly define the class, size, and complexity of all properties.

• Initial values:

- If the property has no explicit initial value, the code generation software
assumes that it is undefined at the beginning of the constructor. The
code generation software does not assign an empty matrix as the default.

- If the property has no initial value and the code generation software
cannot determine that the property is assigned on all paths prior to first
use, the software generates a compilation error.

- For System objects, if a nontunable property is a structure, you must
completely assign the structure. You cannot do partial assignment
using subscripting.

For example, for a nontunable property, you can use the following
assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

10-5

10 Code Generation for MATLAB Classes

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;
mySystemObject.nonTunableProperty.fieldB = b;

- If dynamic memory allocation is enabled, code generation supports
variable-size properties for handle classes. Without dynamic memory
allocation, you cannot generate code for handle classes that have
variable-size properties.

- coder.varsize is not supported for any class properties.

• MATLAB computes class initial values at class loading time before code
generation. If you use persistent variables in MATLAB class property
initialization, the value of the persistent variable computed when the class
loads belongs to MATLAB; it is not the value used at code generation
time. If you use coder.target in MATLAB class property initialization,
coder.target is always ''.

Calls to Base Class Constructor
If a class constructor contains a call to the constructor of the base class, the
call to the base class constructor must be before any for, if, return, switch
or while statements.

For example, if you define a class B based on class A:

classdef B < A
methods

function obj = B(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
obj = obj@A(a,b);

10-6

MATLAB® Classes Definition for Code Generation

end

end
end

Because the class definition for B uses an if statement before calling the base
class constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB
x = B;
y1 = x.p1;
y2 = x.p2;
end

However, you can generate code for callB if you define class B as:

classdef B < A
methods

function obj = NewB(varargin)
[a,b] = getaandb(varargin{:});
obj = obj@A(a,b);

end

end
end

function [a,b] = getaandb(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
end

10-7

10 Code Generation for MATLAB Classes

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined
System objects. Your class can have multiple methods and properties and can
inherit from multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 10-10

Handle classes including
user-defined System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
10-16

For more information, see:

• “Classes in the MATLAB Language”

• “MATLAB Classes Definition for Code Generation” on page 10-2

10-8

Memory Allocation Requirements

Memory Allocation Requirements
When you create a handle object, you must assign the object to a persistent
variable or to a property of another MATLAB object that must also be a
persistent variable. The assignment must be in an if-isempty clause. After
assignment, you can copy the object to a local variable, pass it to or return
it from another function. For more information, see “Generate Code for
MATLAB Handle Classes and System Objects” on page 10-16.

10-9

10 Code Generation for MATLAB Classes

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then
view the generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code
as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY

properties
centerX;
centerY;

end
properties (Dependent = true)

area;
end
methods

function out = get.area(obj)
out = obj.getarea();

end
function obj = Shape(centerX,centerY)

obj.centerX = centerX;
obj.centerY = centerY;

end
end
methods(Abstract = true)

getarea(obj);
end
methods(Static)

function d = distanceBetweenShapes(shape1,shape2)
xDist = abs(shape1.centerX - shape2.centerX);
yDist = abs(shape1.centerY - shape2.centerY);
d = sqrt(xDist^2 + yDist^2);

end
end

end

10-10

Generate Code for MATLAB® Value Classes

2 In the same folder, create a class, Square, that is a subclass of Shape. Save
the code as Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side

properties
side;

end
methods

function obj = Square(side,centerX,centerY)
obj@Shape(centerX,centerY);
obj.side = side;

end
function Area = getarea(obj)

Area = obj.side^2;
end

end
end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape.
Save the code as Rhombus.m.

classdef Rhombus < Shape
properties

diag1;
diag2;

end
methods

function obj = Rhombus(diag1,diag2,centerX,centerY)
obj@Shape(centerX,centerY);
obj.diag1 = diag1;
obj.diag2 = diag2;

end
function Area = getarea(obj)

Area = 0.5*obj.diag1*obj.diag2;
end

end
end

4 Write a function that uses this class.

10-11

10 Code Generation for MATLAB Classes

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation
report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape,
and supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.

7 In the report, on theMATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights
the class constructor. On the Variables tab, it provides details of all the
variables used in the class. If a variable is a MATLAB object, by default,
the report displays the object without displaying its properties, as shown
for obj>1. To view the complete list of properties, expand the list as shown
for obj>2.

10-12

Generate Code for MATLAB® Value Classes

8 At the top right side of the report, expand the Calls list.

The Calls list shows that there is a call to the Rhombus constructor from
use_shape and that this constructor calls the Shape constructor.

10-13

10 Code Generation for MATLAB Classes

9 The constructor for the Rhombus class calls the Shape method of the base
Shape class: obj@Shape. In the report, click the Shape link in this call.

10-14

Generate Code for MATLAB® Value Classes

The link takes you to the Shape method in the Shape class definition.

10-15

10 Code Generation for MATLAB Classes

Generate Code for MATLAB Handle Classes and System
Objects

This example shows how to generate code for a user-defined System object
and then view the generated code in the code generation report. When you
create a System or handle object, you must assign the object to a persistent
variable or to a property of another MATLAB object that must also be a
persistent variable. The assignment must be in an if-isempty clause. After
assignment, you can copy the object to a local variable, pass it to or return it
from another function.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method
function y = stepImpl(~,x)

y = x+1;
end

end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen

persistent p;
if isempty(p)

p = AddOne();
end
y = p.step(x);

end

For code generation, you must immediately assign a System object to a
persistent variable in an if isempty clause as in this example.

3 Generate a MEX function for this code.

10-16

Generate Code for MATLAB® Handle Classes and System Objects

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur. The -args option specifies that the
testAddOne function takes one scalar double input.

>> codegen -report testAddOne -args {0}
Code generation successful: View report

4 Click the View report link.

5 In the report, on the MATLAB Code tab Functions panel, click
testAddOne, then click the Variables tab. You can view information about
the variable p on this tab.

6 To view the class definition, on the Classes panel, click AddOne.

10-17

10 Code Generation for MATLAB Classes

10-18

MATLAB® Classes in Code Generation Reports

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes
Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.

• Display a list of methods for each class in the MATLAB code tab.

• Display the objects used in your MATLAB code together with their
properties on the Variables tab.

• Provide a filter so that you can sort methods by class, size, and complexity.

• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab
The report displays an alphabetical hierarchical list of the classes used in the
your MATLAB code. For each class, you can:

• Expand the class information to view the class methods.

• View a class method by clicking its name. The report displays the methods
in the context of the full class definition.

• Filter the methods by size, complexity, and class by using the Filter
functions and methods option.

Default Constructors. If a class has a default constructor, the report
displays the constructor in italics.

Specializations. If the same class is specialized into multiple different
classes, the report differentiates the specializations by grouping each one
under a single node in the tree. The report associates the class definition
functions and static methods with the primary node. It associates the
instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea,

10-19

10 Code Generation for MATLAB Classes

and a static method, distanceBetweenShapes. The code generation report,
displays a node for the specialized Rhombus and Square classes with their
constructors and getarea method. It displays a node for the Shape class and
its associated static method, distanceBetweenShapes, and two instances of
the Shape class, Shape1 and Shape2.

Packages. If you define classes as part of a package, the report displays
the package in the list of classes. You can expand the package to view the
classes that it contains. For more information about packages, see “Packages
Create Namespaces”.

In the Variables Tab
The report displays all the objects in the selected function or class. By default,
for classes that have properties, the list of properties is collapsed. Click the
+ symbol next to the object name to open the list.

The report displays the properties using just the base property name, not the
fully qualified name. For example, if your code uses variable obj1 that is a

10-20

MATLAB® Classes in Code Generation Reports

MATLAB object with property prop1, then the report displays the property as
prop1 not obj1.prop1. When you sort the Variables column, the sort order
is based on the fully qualified property name.

In the Call Stack
The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report
Add the -report option to your codegen command (requires a MATLAB
Coder license)

10-21

10 Code Generation for MATLAB Classes

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name
If a MATLAB class has a method, mymethod, that returns a handle class
with a property, myprop, you cannot generate code for the following type of
assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
properties

myprop
end
methods

function this = MyClass
this.myprop = MyClass2;

end
function y = mymethod(this)

y = this.myprop;
end

end
end

classdef MyClass2 < handle
properties

aa
end

end

You cannot generate code for function foo.

function foo

persistent h
if isempty(h)

h = MyClass;
end

10-22

Troubleshooting Issues with MATLAB® Classes

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In
MATLAB, the assignment h.mymethod().aa = 12; changes the property of
that object. Code generation does not support this assignment.

Workaround
Rewrite the code to return the object and then assign a value to a property
of the object.

function foo

persistent h
if isempty(h)

h = MyClass;
end

b=h.mymethod();
b.aa=12;

10-23

10 Code Generation for MATLAB Classes

10-24

11

Code Generation for
Function Handles

• “Function Handles Definition for Code Generation” on page 11-2

• “Define and Pass Function Handles for Code Generation” on page 11-3

• “Function Handle Limitations for Code Generation” on page 11-5

11 Code Generation for Function Handles

Function Handles Definition for Code Generation
You can use function handles to invoke functions indirectly and parameterize
operations that you repeat frequently. You can perform the following
operations with function handles:

• Define handles that reference user-defined functions and built-in functions
supported for code generation (see “Functions Supported for Code
Generation — Alphabetical List” on page 4-2)

Note You cannot define handles that reference extrinsic MATLAB
functions.

• Define function handles as scalar values

• Pass function handles as arguments to other functions (excluding extrinsic
functions)

To generate efficient standalone code for enumerated data, you are restricted
to using a subset of the operations you can perform with function handles in
MATLAB, as described in “Function Handle Limitations for Code Generation”
on page 11-5

11-2

Define and Pass Function Handles for Code Generation

Define and Pass Function Handles for Code Generation
The following code example shows how to define and call function handles for
code generation. You can copy the example to a MATLAB Function block
in Simulink or MATLAB function in Stateflow. To convert this function to
a MEX function using codegen, uncomment the two calls to the assert
function, highlighted below:

function addval(m)
%#codegen

% Define class and size of primary input m
% Uncomment next two lines to build MEX function with codegen
% assert(isa(m,'double'));
% assert(all (size(m) == [3 3]));

% Pass function handle to addone
% to add one to each element of m
m = map(@addone, m);
disp(m);

% Pass function handle to addtwo
% to add two to each element of m
m = map(@addtwo, m);
disp(m);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)
y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed

11-3

11 Code Generation for Function Handles

by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

If you have MATLAB Coder, you can use the function codegen to convert the
function addval to a MEX executable that you can run in MATLAB. Follow
these steps:

1 At the MATLAB command prompt, issue this command:

codegen addval

2 Define and initialize a 3-by-3 matrix by typing a command like this at
the MATLAB prompt:

m = zeros(3)

3 Execute the function by typing this command:

addval(m)

You should see the following result:

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

3 3 3
3 3 3
3 3 3

For more information, see “MEX Function Generation at the Command Line”.

11-4

Function Handle Limitations for Code Generation

Function Handle Limitations for Code Generation
Function handles must be scalar values.

You cannot store function handles in matrices or structures.

You cannot use the same bound variable to reference different
function handles.

After you bind a variable to a specific function, you cannot use the same
variable to reference two different function handles, as in this example

%Incorrect code
...
x = @plus;
x = @minus;
...

This code produces a compilation error.

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic
MATLAB functions. For more information, see “Declaring MATLAB
Functions as Extrinsic Functions” on page 13-12

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary
functions. For example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its
data as primary inputs. plotFcn attempts to call the function referenced by

11-5

11 Code Generation for Function Handles

the fhandle with the input data and plot the results. However, this code
generates a compilation error, indicating that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB
function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. They
appear as empty matrices.

11-6

12

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 12-2

• “Supported Index Expressions” on page 12-3

• “Apply Operations to a Variable Number of Arguments” on page 12-4

• “Implement Wrapper Functions” on page 12-7

• “Pass Property/Value Pairs” on page 12-8

• “Variable Length Argument Lists for Code Generation” on page 12-10

12 Defining Functions for Code Generation

Specify Variable Numbers of Arguments
You can use varargin and varargout for passing and returning variable
numbers of parameters to MATLAB functions called from a top-level function.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 12-4

• “Implement Wrapper Functions” on page 12-7

• “Pass Property/Value Pairs” on page 12-8

Code generation relies on loop unrolling to produce simple and efficient code
for varargin and varargout. This technique permits most common uses of
varargin and varargout, but not all (see “Variable Length Argument Lists
for Code Generation” on page 12-10). This following sections explain how to
code effectively using these constructs.

For more information about using varargin and varargout in MATLAB
functions, see Passing Variable Numbers of Arguments.

12-2

Supported Index Expressions

Supported Index Expressions
In MATLAB, varargin and varargout are cell arrays. Generated code does
not support cell arrays, but does allow you to use the most common syntax
— curly braces {} — for indexing into varargin and varargout arrays, as
in this example:

%#codegen
function [x,y,z] = fcn(a,b,c)
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i};
end

You can use the following index expressions. The exp arguments must be
constant expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element
exp

varargin{exp1: exp2} Read the values of elements
exp1 through exp2

varargin
(read only)

varargin{:} Read the values of all
elements

varargout
(read and write)

varargout{exp} Read or write the value of
element exp

Note The use of () is not supported for indexing into varargin and
varargout arrays.

12-3

12 Defining Functions for Code Generation

Apply Operations to a Variable Number of Arguments
You can use varargin and varargout in for-loops to apply operations to
a variable number of arguments. To index into varargin and varargout
arrays in generated code, the value of the loop index variable must be known
at compile time. Therefore, during code generation, the compiler attempts
to automatically unroll these for-loops. Unrolling eliminates the loop logic
by creating a separate copy of the loop body in the generated code for each
iteration. Within each iteration, the loop index variable becomes a constant.
For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

When to Force Loop Unrolling
To automatically unroll for-loops containing varargin and varargout
expressions, the relationship between the loop index expression and the index
variable must be determined at compile time.

In the following example, the function fcn cannot detect a logical relationship
between the index expression j and the index variable i:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:length(varargin)

j = j+1;
varargout{j} = varargin{j};

12-4

Apply Operations to a Variable Number of Arguments

end

As a result, the function does not unroll the loop and generates a compilation
error:

Nonconstant expression or empty matrix.
This expression must be constant because
its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header
in the function coder.unroll, as follows:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = coder.unroll(1:length(varargin))

j = j + 1;
varargout{j} = varargin{j};

end;

Using Variable Numbers of Arguments in a for-Loop
The following example multiplies a variable number of input dimensions in
inches by 2.54 to convert them to centimeters:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

12-5

12 Defining Functions for Code Generation

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in
the top-level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code
Generation” on page 12-10.

12-6

Implement Wrapper Functions

Implement Wrapper Functions
You can use varargin and varargout to write wrapper functions that accept
any number of inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One
Function to Another
The following example passes a variable number of inputs to different
optimization functions, based on a specified input method:

%#codegen
function answer = fcn(method,a,b,c)
answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)
if strcmp(method,'simple')

answer = simple_optimization(varargin{:});
else

answer = complex_optimization(varargin{:});
end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another
function.

• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code
Generation” on page 12-10.

12-7

12 Defining Functions for Code Generation

Pass Property/Value Pairs
You can use varargin to pass property/value pairs in functions. However,
for code generation, you must take precautions to avoid type mismatch errors
when evaluating varargin array elements in a for-loop:

If Do This:

You assign varargin array elements
to local variables in the for-loop

Verify that for all pairs, the size,
type, and complexity are the same
for each property and the same for
each value

Properties or values have different
sizes, types, or complexity

Do not assign varargin array
elements to local variables in a
for-loop; reference the elements
directly

For example, in the following function test1, the sizes of the property strings
and numeric values are not the same in each pair:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

name = varargin{i};
value = varargin{i+1};
switch name

case 'size'
v = set_size(v, value);

case 'rgb'
v = set_color(v, value);

otherwise
end

end
end

12-8

Pass Property/Value Pairs

...

Generated code determines the size, type, and complexity of a local variable
based on its first assignment. In this example, the first assignments occur
in the first iteration of the for-loop:

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to
3 and the size of the numeric value changes to a vector, resulting in a type
mismatch error. To avoid such errors, reference varargin array values
directly, not through local variables, as highlighted in this code:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

switch varargin{i}
case 'size'

v = set_size(v, varargin{i+1});
case 'rgb'

v = set_color(v, varargin{i+1});
otherwise

end
end

end
...

12-9

12 Defining Functions for Code Generation

Variable Length Argument Lists for Code Generation
Do not use varargin or varargout in top-level functions

You cannot use varargin or varargout as arguments to top-level functions.
A top-level function is:

• The function called by Simulink in a MATLAB Function block or by
Stateflow in a MATLAB function.

• The function that you provide on the command line to codegen

For example, the following code generates compilation errors:

%#codegen
function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

To fix the problem, write a top-level function that specifies a fixed number of
inputs and outputs and then call inch_2_cm as an external function or local
function, as in this example:

%#codegen
function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)
[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (),
to index into varargin and varargout arrays. For more information, see
“Supported Index Expressions” on page 12-3.

12-10

Variable Length Argument Lists for Code Generation

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that
the value of the expression can be computed at compile time. For examples,
see “Apply Operations to a Variable Number of Arguments” on page 12-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write
to any of the input arguments, copy the values into a local variable.

12-11

12 Defining Functions for Code Generation

12-12

13

Calling Functions for Code
Generation

• “Resolution of Function Calls in MATLAB Generated Code” on page 13-2

• “Resolution of Files Types on Code Generation Path” on page 13-6

• “Compilation Directive %#codegen” on page 13-8

• “Call Local Functions” on page 13-9

• “Call Supported Toolbox Functions” on page 13-10

• “Call MATLAB Functions” on page 13-11

13 Calling Functions for Code Generation

Resolution of Function Calls in MATLAB Generated Code
From a MATLAB function, you can call local functions, supported toolbox
functions, and other MATLAB functions. MATLAB resolves function names
for code generation as follows:

13-2

Resolution of Function Calls in MATLAB® Generated Code

��������	
��

�����	
�

�
���
�
��
�������	
�
�����

�����	
�

�

������
�����

����	��	�
�����	
��

�����	
�

�

������
�����

�������	������
�

������

�
�
������	
�
��
����	��

��

��

��

���

��	�����
�
�
�
��

�������	
��

���

���

���

%�����!�
&�����

�����

 �������
���
�

��

��

��

13-3

13 Calling Functions for Code Generation

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function
calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 13-4.

• Attempts to compile all functions unless the code generation software
determines that it should not compile them or you explicitly declare them
to be extrinsic.

An extrinsic function is a function on the MATLAB path that the compiler
dispatches to MATLAB software for execution because the target language
does not support the function. MATLAB does not generate code for extrinsic
functions. You declare functions to be extrinsic by using the construct
coder.extrinsic, as described in “Declaring MATLAB Functions as
Extrinsic Functions” on page 13-12.

The code generation software detects calls to many common visualization
functions, such as plot, disp, and figure. For MEX code generation, it
automatically calls out to MATLAB for these functions. For standalone
code generation, it does not generate code for these visualization functions.
This capability removes the requirement to declare these functions
extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of
Files Types on Code Generation Path” on page 13-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code
generation path contains the toolbox functions supported for code
generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this
path.

13-4

Resolution of Function Calls in MATLAB® Generated Code

MATLAB applies the same dispatcher rules when searching each path (see
“Function Precedence Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. A file on the code generation path always shadows a file
of the same name on the MATLAB path.

13-5

13 Calling Functions for Code Generation

Resolution of Files Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

13-6

Resolution of Files Types on Code Generation Path

��!"�	���

���"�	���

#"�	���

�"�	��
���
��!"�	��
	�
����

�	����
�$�

���

��

��

��

���

�"�	���

���

���

�����

��

&������
'(����

 �������
���
�

�����

13-7

13 Calling Functions for Code Generation

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function to indicate that you
intend to generate code for the MATLAB algorithm. Adding this directive
instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

13-8

Call Local Functions

Call Local Functions
Local functions are functions defined in the body of MATLAB function. They
work the same way for code generation as they do when executing your
algorithm in the MATLAB environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)
%#codegen

% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

13-9

13 Calling Functions for Code Generation

Call Supported Toolbox Functions
You can call toolbox functions directly if they are supported for code
generation. For a list of supported functions, see “Functions Supported for
Code Generation — Alphabetical List” on page 4-2.

13-10

Call MATLAB® Functions

Call MATLAB Functions
The code generation software attempts to generate code for all functions, even
if they are not supported for C code generation. The software detects calls
to many common visualization functions, such as plot, disp, and figure.
For MEX code generation, it automatically calls out to MATLAB for these
functions. For standalone code generation, it does not generate code for them.

For example, you might want to call plot to visualize your results in the
MATLAB environment. If you generate a MEX function from a function that
calls plot and then run the generated MEX function, the code generation
software dispatches calls to the plot function to MATLAB. If you generate a
library or executable, the generated code does not contain calls to the plot
function. The code generation report highlights calls from your MATLAB
code to extrinsic functions so that it is easy to determine which functions are
supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you
must declare the functions (like pause) to be extrinsic (see “Resolution
of Function Calls in MATLAB Generated Code” on page 13-2). Extrinsic
functions are not compiled, but instead executed in MATLAB during
simulation (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 13-16).

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsic construct in main functions or local functions
(see “Declaring MATLAB Functions as Extrinsic Functions” on page 13-12).

13-11

13 Calling Functions for Code Generation

• Call the function indirectly using feval (see “Calling MATLAB Functions
Using feval” on page 13-16).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the coder.extrinsic
construct at the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions
The following code declares the MATLAB patch function extrinsic in the
local function create_plot:

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

The code generation software detects that axis is not supported for code
generation and automatically treats it as an extrinsic function. The compiler
does not generate code for patch and axis, but instead dispatches them to
MATLAB for execution.

To test the function, follow these steps:

13-12

Call MATLAB® Functions

1 Convert pythagoras to a MEX function by executing this command at
the MATLAB prompt:

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view
the MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they
are supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

13-13

13 Calling Functions for Code Generation

When to Use the coder.extrinsic Construct
Use the coder.extrinsic construct to:

• Call MATLAB functions that produce no output — such as pause— during
simulation, without generating unnecessary code (see “How MATLAB
Resolves Extrinsic Functions During Simulation” on page 13-16).

• Make your code self-documenting and easier to debug. You can scan the
source code for coder.extrinsic statements to isolate calls to MATLAB
functions, which can potentially create and propagate mxArrays (see
“Working with mxArrays” on page 13-17).

• Save typing. With one coder.extrinsic statement, each subsequent
function call is extrinsic, as long as the call and the statement are in the
same scope (see “Scope of Extrinsic Function Declarations” on page 13-15).

13-14

Call MATLAB® Functions

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 13-15). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 13-16).

Rules for Extrinsic Function Declarations
Observe the following rules when declaring functions extrinsic for code
generation:

• Declare the function extrinsic before you call it.

• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations
The coder.extrinsic construct has function scope. For example, consider
the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are
called in the main function foo. There are two ways to narrow the scope of
an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this
example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

13-15

13 Calling Functions for Code Generation

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
local function mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 13-16.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function
during code generation. Therefore, you can use feval to conveniently call
functions that you want to execute in the MATLAB environment, rather than
compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not compiled — which has the same effect as declaring the
function min extrinsic for just this one call. By contrast, the function rat is
extrinsic throughout the function foo.

How MATLAB Resolves Extrinsic Functions During
Simulation
MATLAB resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

13-16

Call MATLAB® Functions

During simulation, MATLAB generates code for the call to an extrinsic
function, but does not generate the function’s internal code. Therefore, you
can run the simulation only on platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the
extrinsic function affects the output of the function in which it is called — for
example by returning mxArrays to an output variable (see “Working with
mxArrays” on page 13-17). Provided that there is no change to the output,
MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, MATLAB issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB
array. The only valid operations for mxArrays are:

• Storing mxArrays in variables

• Passing mxArrays to functions and returning them from functions

• Converting mxArrays to known types at run time

13-17

13 Calling Functions for Code Generation

To use mxArrays returned by extrinsic functions in other operations, you must
first convert them to known types, as described in “Converting mxArrays to
Known Types” on page 13-18.

Converting mxArrays to Known Types
To convert anmxArray to a known type, assign the mxArray to a variable
whose type is defined. At run time, the mxArray is converted to the type of the
variable assigned to it. However, if the data in the mxArray is not consistent
with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat,
which returns two mxArrays representing the numerator N and denominator
D of the rational fraction approximation of pi. Although you can pass these
mxArrays to another MATLAB function — in this case, min — you cannot
assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink
model, the code generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

13-18

Call MATLAB® Functions

Restrictions on Extrinsic Functions for Code
Generation
The full MATLAB run-time environment is not supported during code
generation. Therefore, the following restrictions apply when calling MATLAB
functions extrinsically:

• MATLAB functions that inspect the caller or write to the caller’s workspace
do not work during code generation. Such functions include:

- dbstack

- evalin

- assignin

• The MATLAB debugger cannot inspect variables defined in extrinsic
functions.

• Functions in generated code may produce unpredictable results if your
extrinsic function performs any of the following actions at run time:

- Change folders

- Change the MATLAB path

- Delete or add MATLAB files

- Change warning states

- Change MATLAB preferences

- Change Simulink parameters

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

13-19

13 Calling Functions for Code Generation

13-20

14

Fixed-Point Conversion

• “Propose Fixed-Point Data Types” on page 14-2

• “Apply Fixed-Point Data Types” on page 14-12

• “Workflow for Proposing Data Types in a MATLAB® Coder™ Project” on
page 14-18

• “Proposing Fraction Lengths” on page 14-19

• “Proposing Word Lengths” on page 14-20

• “Modify Data Type Proposal Settings” on page 14-21

• “Modify Instrumentation Report Settings” on page 14-25

• “View Data Type Proposals” on page 14-26

• “View Simulation Minimum and Maximum Values” on page 14-27

• “Merging Instrumentation Results” on page 14-28

• “Clearing Instrumentation Results” on page 14-29

• “Redirecting Entry-Point Calls to MEX Function” on page 14-30

14 Fixed-Point Conversion

Propose Fixed-Point Data Types
Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Toolbox

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

14-2

Propose Fixed-Point Data Types

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x)
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

14-3

14 Fixed-Point Conversion

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“MATLAB Code Analysis”.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

14-4

Propose Fixed-Point Data Types

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

About the fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse. The script then plots the results.

Contents of fun_with_matlab_test

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second

14-5

14 Fixed-Point Conversion

f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Entry-Point Input Types dialog box, add
fun_with_matlab_test as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

14-6

Propose Fixed-Point Data Types

MATLAB Coder determines the input types from the test file and then
displays them.

14-7

14 Fixed-Point Conversion

3 In the Autodefine Entry-Point Input Types dialog box, click Use These
Types.

MATLAB Coder sets the type of x to double(1x256).

Build Instrumented MEX Function

1 In the project, click the Build tab.

2 On the Build tab, set the Output type to Instrumented MEX Function.

3 Click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates an instrumented MEX function fun_with_matlab_mex
in the current folder. It also provides a link to the report on the Show
Instrumentation Results pane. In this report, you can view the types of
all variables in your MATLAB code.

14-8

Propose Fixed-Point Data Types

View Data Type Proposal Settings

1 On the Show Instrumentation Results pane, click the Data type
proposal and report settings link.

This example uses the default data type proposal settings which propose
fraction lengths for the specified word lengths. Because the MATLAB code
is floating-point, the word length is specified by the Default data type of
all floating-point expressions field. You can specify the numerictype
signedness, word length and fraction length. Specifying [] for signedness
instructs MATLAB Coder to choose the appropriate signedness based on
simulation values. The default word length is 16. The default fraction
length is 12.

14-9

14 Fixed-Point Conversion

For more information, see “Modify Data Type Proposal Settings” on page
14-21.

2 Close the dialog box.

Run Simulation

1 On the Run Simulation pane, verify that the test file is set to
fun_with_matlab_test and that Redirect entry-point calls to MEX
function is selected. That way, each call to fun_with_matlab is replaced
with a call to the instrumented MEX function fun_with_matlab_mex.

2 On the Run Simulation pane, click Run.

The fun_with_matlab_test file runs and calls fun_with_matlab_mex. The
outputs of the filters are displayed as before.

View Code Generation Report

1 On the Show Instrumentation Results pane, click View Report.

2 In the Code Generation Report, click the Variables tab.

The report displays the simulation minimum and maximum values and the
proposed data types.

14-10

Propose Fixed-Point Data Types

MATLAB Coder proposes data types with word length of 16 and fraction
length optimized to avoid overflows.

Next Steps

To learn how to apply the proposed data types to your entry-point MATLAB
function and verify that the fixed-point version of your algorithm is
functionally equivalent to your original MATLAB algorithm, see “Apply
Fixed-Point Data Types” on page 14-12.

14-11

14 Fixed-Point Conversion

Apply Fixed-Point Data Types
This example shows you how to write a fixed-point version of your entry-point
function using the data types proposed in “Propose Fixed-Point Data Types”
on page 14-2.

You will learn how to:

• Use the proposed data types to create a fixed-point version of your
entry-point function.

• Update your test file to call the fixed-point entry-point function.

• Verify that the fixed-point function is functionally equivalent to the original
MATLAB algorithm.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Toolbox

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

14-12

Apply Fixed-Point Data Types

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the following files to your local working folder.

Type Name Description

Function
code

fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

Function
code

fun_with_fi.m Entry-point MATLAB
function — fixed-point
version of fun_with_matlab
that uses data types
proposed in “Propose
Fixed-Point Data Types”
on page 14-2

Test file fun_with_fi_test.m MATLAB script that runs
both fun_with_matlab and
fun_with_fi and compares
the results

The fun_with_fi Function

The fun_with_fi is a fixed-point version of the fun_with_matlab function
that uses the data types proposed in “Propose Fixed-Point Data Types” on
page 14-2.

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

y Signed 16 14

x Signed 16 14

z Signed 16 15

a Unsigned 16 18

14-13

14 Fixed-Point Conversion

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

b Signed 16 14

i Unsigned 16 0

For example, in fun_with_matlab, variable y is defined as y =
zeros(size(x));. In fun_with_fi, to specify that it is a signed fixed-point
data type with a word length of 16 and a fraction length of 14, y =
fi(zeros(size(x)),1,16,14,'OverflowAction','Wrap','RoundingMethod','Floor')

For more information, see fi.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

By default, the project opens in the MATLAB workspace.

14-14

Apply Fixed-Point Data Types

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_fi.m, and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Entry-Point Input Types dialog box, add
fun_with_fi_test as a test file, and then click Run.

The test file runs and plots the outputs of the filter. MATLAB Coder
determines the input types from the test file and then displays them.

3 In the Autodefine Entry-Point Input Types dialog box, click Use These
Types to accept the autodefined input type.

MATLAB Coder sets the type of x to double(1x256).

The fun_with_fi_test Script

14-15

14 Fixed-Point Conversion

The fun_with_fi_test script runs the original floating-point MATLAB
algorithm, fun_with_matlab, then runs the fixed-point version of the
algorithm, fun_with_fi. The script then plots the outputs for the
floating-point and fixed-point algorithms and the difference in results.

Run Simulation

1 In the project, click the Build tab.

2 On the Verification pane, verify that the test file is set to
fun_with_fi_test. Clear Rebuild MEX function and Redirect
entry-point calls to MEX function so that the test file calls the MATLAB
versions of the original and fixed-point algorithms.

3 On Verification pane, click Run.

The fun_with_fi_test file runs. The test file runs the original MATLAB
algorithm and the fixed-point version, and plots the difference in their
outputs.

14-16

Apply Fixed-Point Data Types

4 Optionally, zoom in on each plot in turn to view the error (difference
between the two versions of the algorithm). In this example, the errors are
very small, on the order of 10-3. If the error is unacceptably large, refine
the fixed-point data types.

14-17

14 Fixed-Point Conversion

Workflow for Proposing Data Types in a MATLAB Coder
Project

1 Verify that your MATLAB code is suitable for code generation. See
“MATLAB Code Analysis”.

2 Add your function to a project.

3 Specify input types.

4 Generate an instrumented MEX function.

5 Test the instrumented MEX function to verify that it is functionally
equivalent to the original MATLAB function.

6 View the proposed data types in the instrumentation report.

7 Create a modified version of your MATLAB function that uses the proposed
fixed-point data types.

8 Test the fixed-point function to verify that it is functionally equivalent
to the original MATLAB function.

For an example, see “Propose Fixed-Point Data Types” on page 14-2.

14-18

Proposing Fraction Lengths

Proposing Fraction Lengths
When you select to propose fraction lengths for the word lengths specified
in the code, MATLAB Coder uses simulation minimum and maximum
information and proposes fraction lengths for variables in your entry-point
MATLAB function. For floating-point data types in your entry-point function,
MATLAB Coder uses the word length and signedness specified in Default
data type of all floating-point expressions to determine the optimal
fraction lengths.

Optionally, specify a safety margin to use when proposing fraction lengths.
For more information, see “Modify Data Type Proposal Settings” on page
14-21.

14-19

14 Fixed-Point Conversion

Proposing Word Lengths
When you select to propose word lengths for the fraction lengths specified
in the code, MATLAB Coder uses simulation minimum and maximum
information and proposes word lengths for variables in your entry-point
MATLAB function. For floating-point data types in your entry-point function,
MATLAB Coder uses the fraction length and signedness specified in Default
data type of all floating-point expressions to determine the optimal word
lengths.

Optionally, specify a safety margin to use when proposing word lengths. For
more information, see “Modify Data Type Proposal Settings” on page 14-21.

14-20

Modify Data Type Proposal Settings

Modify Data Type Proposal Settings
To modify data type proposal settings, on the project Build tab, on the Show
Instrumentation Results pane, click the Data type proposal and report
settings link.

Type Proposal
Setting

Description

Propose data
types

Specify whether to propose data types based on simulation minimum
and maximum values. You can view the proposed data types in the code
generation report.

Dependencies:

• This parameter enables:

- Propose fraction lengths for specified word lengths

- Propose word lengths for specified fraction lengths

- Default data type of all floating-point expressions

- Safety margin for min/max values

- Optimize whole numbers

14-21

14 Fixed-Point Conversion

Type Proposal
Setting

Description

Propose
fraction
lengths for
specified word
lengths

Select to propose fraction lengths for the word lengths specified in the code.

Use simulation minimum and maximum information to propose fraction
lengths for variables in your entry-point MATLAB function. MATLAB
Coder proposes data types for variables that are scaled doubles and built-in
data types only. For floating-point data types in your entry-point function,
uses the word length and signedness specified in Default data type of all
floating-point expressions to determine the optimal fraction lengths.

Dependency:

• Clearing Propose data types disables this parameter.

Propose word
lengths for
specified
fraction
lengths

Select to propose word lengths for the fraction lengths specified in the code.

Use simulation minimum and maximum information to propose word
lengths for variables in your entry-point MATLAB function. MATLAB Coder
proposes data types for variables that are scaled doubles and built-in data
types only. For floating-point data types in your entry-point function, uses
the fraction length and signedness specified in Default data type of all
floating-point expressions to determine the optimal word lengths.

Dependency:

• Clearing Propose data types disables this parameter.

14-22

Modify Data Type Proposal Settings

Type Proposal
Setting

Description

Specify the default data type to use for all floating-point expressions in your
entry-point MATLAB function.

MATLAB Coder uses this default data type to change the floating-point
data types in the code to fixed point.

Dependency:

• Clearing Propose data types disables this parameter.

numerictype([],16,12)
(Default)

Set the default data type for all floating-point
signals to the fixed-point data type specified by
numerictype. You can modify the parameters
provided to numerictype to specify signedness,
word length, and fraction length.

Specifying [] for signedness instructs MATLAB
Coder to choose the appropriate signedness.

Remain floating-point Do not change the data type of floating-point
signals.

int8 Set the default data type for all floating-point
signals to int8.

int16 Set the default data type for all floating-point
signals to int16.

Default data
type of all
floating-point
expressions

int32 Set the default data type for all floating-point
signals to int32.

14-23

14 Fixed-Point Conversion

Type Proposal
Setting

Description

Safety margin
for min/max
values

Specify safety factor for simulation minimum and maximum values.

The simulation minimum and maximum values are adjusted by the
percentage designated by this parameter, allowing you to specify a range
different from that obtained from the simulation run. For example, a value
of 55 specifies that you want a range at least 55 percent larger. A value of
-15 specifies that a range up to 15 percent smaller is acceptable.

Dependency:

• Clearing Propose data types disables this parameter.

Optimize whole
numbers

Specify to use integer scaling for variables that were whole numbers during
simulation.

Dependency:

• Clearing Propose data types disables this parameter.

14-24

Modify Instrumentation Report Settings

Modify Instrumentation Report Settings
To modify instrumentation report settings, on the project Build tab, on the
Show Instrumentation Results pane, click the Data type proposal and
report settings link.

Report Setting Description

Automatically launch
report after running test
file

Specify whether to automatically display the report after
running the test file.

Open report in a web
browser

Specify whether to open the report in a Web browser. Enabling
this option allows you to open multiple reports simultaneously.

Create printable report Specify whether to create a printable report.

14-25

14 Fixed-Point Conversion

View Data Type Proposals
First build an instrumented MEX function and run a test file that calls this
MEX function. For more information, see “Propose Fixed-Point Data Types”
on page 14-2.

To view the proposed data types:

1 On the project Build tab, on the Show Instrumentation Results pane,
click View Report.

2 In the report, click the Variables tab.

14-26

View Simulation Minimum and Maximum Values

View Simulation Minimum and Maximum Values
First build an instrumented MEX function and run a test file that calls this
MEX function. For more information, see “Propose Fixed-Point Data Types”
on page 14-2.

To view the simulation minimum and maximum values:

1 On the project Build tab, on the Show Instrumentation Results pane,
click View Report.

2 In the report, click the Variables tab.

14-27

14 Fixed-Point Conversion

Merging Instrumentation Results
Use the Merge instrumentation results from multiple simulations
option to specify whether to merge new simulation minimum and maximum
results with existing simulation results. Merging instrumentation results
allows you to collect complete range information from multiple test files.

14-28

Clearing Instrumentation Results

Clearing Instrumentation Results
Click the Clear instrumentation results button to clear instrumentation
results from previous runs.

14-29

14 Fixed-Point Conversion

Redirecting Entry-Point Calls to MEX Function
By default, with the Redirect entry-point calls to MEX function option
selected, the MATLAB Coder software automatically redirects calls to your
MATLAB algorithm in the test file to calls to the generated MEX function.
The generated MEX function must be in the same folder as the entry-point
functions.

If your test file already calls the MEX function, or you want to run the test file
to test the original MATLAB algorithm, clear this option.

14-30

15

Bug Reports

15 Bug Reports

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers. Enter the search
phrase "Simulation And Code Generation Mismatch" to obtain a report of
known bugs where the output of the simulation differs from the output of the
generated code.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

15-2

http://www.mathworks.com/support/bugreports/

16

Setting Up a MATLAB
Coder Project

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Creating a New Project” on page 16-3

• “Opening an Existing Project” on page 16-5

• “Adding Files to the Project” on page 16-6

• “Specifying Properties of Primary Function Inputs in a Project” on page 16-7

• “Autodefine Input Types” on page 16-8

• “Define Input Parameters by Example in a Project” on page 16-12

• “Define or Edit Input Parameter Type in a Project” on page 16-19

• “Define Constant Input Parameters in a Project” on page 16-30

• “Define Inputs Programmatically in the MATLAB File” on page 16-31

• “Adding Global Variables in a Project” on page 16-32

• “Specifying Global Variable Type and Initial Value in a Project” on page
16-33

• “Specify Output File Name” on page 16-40

• “Specify Output File Locations” on page 16-41

• “Selecting Output Type” on page 16-42

16 Setting Up a MATLAB® Coder™ Project

MATLAB Coder Project Set Up Workflow
1 Create a new project or open an existing one.

2 Add the files from which you want to generate code.

3 Specify class, size, and complexity of all input parameters.

4 Optionally, add global variables.

5 Optionally, specify the output file name and output file locations.

6 Optionally, select the output type: MEX function (default), Instrumented
MEX function, C/C++ static library, C/C++ dynamic library or C/C++
executable.

16-2

Creating a New Project

Creating a New Project

From the MATLAB APPS Tab

1 Select the MATLAB Apps tab.

2 In the Code Generation group, click MATLAB Coder.

3 In the Code Generation Project dialog box, on the New tab, enter the
name of your project in the Name field.

4 Enter the location of the project in the Location field.

Alternatively, use the ... (browse) button to navigate to the location.

5 Click OK.

At the Command Line

1 At the MATLAB command line, enter:

coder

16-3

16 Setting Up a MATLAB® Coder™ Project

2 In the Name field, enter the project_name.

3 In the Location field, enter the location of the project.

Alternatively, use the ... (browse) button to navigate to the location.

Note The path should not contain spaces, as this can lead to code
generation failures in certain operating system configurations. If the
path contains non 7-bit ASCII characters, such as Japanese characters,
MATLAB Coder might not be able to find files on this path.

4 Click OK.

MATLAB Coder creates a project named project_name.prj in the specified
location and marks it with the project icon: .

From a MATLAB Coder Project
If you already have a MATLAB Coder project open, in the upper-right corner
of the project, click the Actions icon () and select New Project.

16-4

Opening an Existing Project

Opening an Existing Project

In this section...

“From the MATLAB APPS Tab” on page 16-5

“At the Command Line” on page 16-5

“From a MATLAB® Coder™ Project” on page 16-5

From the MATLAB APPS Tab

1 Select the MATLAB Apps tab.

2 In the Code Generation group, click MATLAB Coder.

3 In the Code Generation Project dialog box, click the Open tab.

4 From the drop-down list, select a previously opened project or use the
Browse button to find a project.

5 Click OK.

At the Command Line

1 At the MATLAB command line, enter coder.

2 In the Code Generation Project dialog box, click the Open tab.

3 From the drop-down list, select a previously opened project or click the
Browse button to find a project.

4 Click OK.

From a MATLAB Coder Project
If you already have a MATLAB Coder project open, in the upper-right corner
of the project, click the Actions icon () and select Open Project.

16-5

16 Setting Up a MATLAB® Coder™ Project

Adding Files to the Project
First, you must add the MATLAB files from which you want to generate code
to the project.

• Add only the main (entry-point) files that you call from MATLAB.

• Do not add files that are called by these files.

• Do not add files that have spaces in their names. The path should not
contain spaces, as this can lead to code generation failures in certain
operating system configurations.

• If the path contains non 7-bit ASCII characters, such as Japanese
characters, MATLAB Coder might not be able to find files on this path.

To add a file, do one of the following:

• In the project, in the Entry-Point Files pane on the Overview tab, click
the Add files link and browse to the file.

• Drag a file from the current folder and drop it in the Entry-Point Files
pane on the Overview tab.

If you add more than one entry-point file, MATLAB Coder lists them
alphabetically.

If the functions that you added have inputs, you must define these inputs. See
“Specifying Properties of Primary Function Inputs in a Project” on page 16-7.

16-6

Specifying Properties of Primary Function Inputs in a Project

Specifying Properties of Primary Function Inputs in a
Project

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at code
generation time. To infer variable properties in MATLAB files, MATLAB
Coder must be able to identify the properties of the inputs to the entry-point
function. Therefore, if your entry-point function has inputs, you must
specify the properties of these inputs. If your primary function has no
input parameters, MATLAB Coder can compile your MATLAB file without
modification. You do not need to specify properties of inputs to local functions
or external functions called by the entry-point function.

You must specify the same number and order of inputs as the MATLAB
function unless you use the tilde (~) character to specify unused function
inputs. If you use the tilde character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify” on page 19-38

How to Specify an Input Definition in a Project
Specify an input definition in your MATLAB Coder project using one of the
following methods:

• Autodefine Input Types

• Define Type

• Define by Example

• Define Constant

• Define Programmatically in the MATLAB File

Alternatively, specify input definitions at the command line and then use
the codegen function to generate code. For more information, see “Primary
Function Input Specification” on page 19-38.

16-7

16 Setting Up a MATLAB® Coder™ Project

Autodefine Input Types

In this section...

“How MATLAB Coder Autodefines Input Types” on page 16-8

“Prerequisites for Autodefining Input Types” on page 16-8

“How to Autodefine Input Types” on page 16-8

How MATLAB Coder Autodefines Input Types
If you specify a test file that calls the project entry-point functions, the
MATLAB Coder software can infer the input parameter types by running
the test file. If a test file calls an entry-point function multiple times with
different sized inputs, the MATLAB Coder software takes the union of the
inputs and infers that the inputs are variable size, with an upper bound equal
to the size of the largest input.

Prerequisites for Autodefining Input Types
Before using MATLAB Coder to autodefine entry-point function input
parameter types, you must add at least one entry-point file to your project.
You must also specify a test file that calls your entry-point functions with the
expected input types. The test file can be either a MATLAB function or a
script. It should call the entry-point function at least once.

How to Autodefine Input Types

1 On the MATLAB Coder project Overview tab, click the Autodefine types
link.

16-8

Autodefine Input Types

2 In the Autodefine Entry-Point Input Types dialog box, click the
button to add a test file to the project.

3 Browse to the folder that contains the test file and select the file.

Alternatively, if you have already added test files to the project, select
one from the list.

4 Click the Run button.

The software runs the test file and, if the file calls entry-point functions,
infers input types for these functions.

16-9

16 Setting Up a MATLAB® Coder™ Project

The dialog box displays a summary of the inferred types and provides the
following options:

• Make dimensions variable-sized if they are at least

If you want inputs above a specified size to be variable size with an
upper bound, select this option and specify the threshold. If the size, S, of
any dimension of an input is equal to or greater than this threshold, the
software makes this dimension variable size with an upper bound of S.

• Make dimensions unbounded if they are at least

If you want inputs above a specified size to be variable size with no upper
bounds (unbounded), select this option and specify the threshold. If the
size of any dimension an input is equal to or greater than this threshold,
the software makes this dimension unbounded.

16-10

Autodefine Input Types

5 Review the inferred types. If the types are acceptable, click Use These
Types. Otherwise, modify your test file, use a different test file to
autodefine the types or define them using an alternate method. For more
information, see “How to Specify an Input Definition in a Project” on page
16-7.

16-11

16 Setting Up a MATLAB® Coder™ Project

Define Input Parameters by Example in a Project

In this section...

“How to Define an Input Parameter by Example” on page 16-12

“Specifying Input Parameters by Example” on page 16-13

“Specifying an Enumerated Type Input Parameter by Example” on page
16-15

“Specifying a Fixed-Point Input Parameter by Example” on page 16-17

How to Define an Input Parameter by Example

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

16-12

Define Input Parameters by Example in a Project

2 From the list of input options, select Define by Example.

3 In the field to the right of the parameter, enter a MATLAB expression.
MATLAB Coder software uses the class, size, and complexity of the value
of the specified variable or MATLAB expression when compiling the code.

Specifying Input Parameters by Example
This example shows how too specify a 1-by-4 vector of unsigned 16-bit
integers.

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

16-13

16 Setting Up a MATLAB® Coder™ Project

2 From the list of input options, select Define by Example.

3 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).

4 Optionally, after specifying the input type, you can specify that the input
is variable size.

Select the second dimension.

16-14

Define Input Parameters by Example in a Project

5 From the list of size options, select :4 to specify that the second dimension
is variable size with an upper bound of 4. Alternatively, select :Inf to
specify that the second dimension is unbounded.

Alternatively, you can specify that the input is variable size by using the
coder.newtype function. Enter the following MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note To specify that an input is a double-precision scalar, simply enter 0.

Specifying an Enumerated Type Input Parameter by
Example
This example shows how to specify that an input uses the enumerated type
MyColors.

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

classdef(Enumeration) MyColors < int32
enumeration

16-15

16 Setting Up a MATLAB® Coder™ Project

green(1),
red(2),

end
end

2 On the MATLAB Coder project Overview tab, click to the input parameter
that you want to define.

3 From the list of input options, select Define by Example.

4 In the field to the right of the parameter, enter the following MATLAB
expression:

16-16

Define Input Parameters by Example in a Project

MyColors.red

Specifying a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

This example shows how to specify a signed fixed-point type with a word
length of 8 bits, and a fraction length of 3 bits.

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

2 From the list of input options, select Define by Example.

16-17

16 Setting Up a MATLAB® Coder™ Project

3 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

MATLAB Coder sets the type of input u to embedded.fi(1x1). By default,
if you have not specified a local fimath, MATLAB Coder uses the default
fimath. For more information, see “fimath for Sharing Arithmetic Rules”.

Optionally, modify the fixed-point properties of the input, see “Specifying
a Fixed-Point Input Parameter by Type” on page 16-21 or the size of the
input, see “Define or Edit Input Parameter Type in a Project” on page 16-19.

16-18

Define or Edit Input Parameter Type in a Project

Define or Edit Input Parameter Type in a Project

In this section...

“How to Define or Edit an Input Parameter Type” on page 16-19

“Specifying an Enumerated Type Input Parameter by Type” on page 16-21

“Specifying a Fixed-Point Input Parameter by Type” on page 16-21

“Specifying Structures” on page 16-23

How to Define or Edit an Input Parameter Type
The following procedure is for input types double, single, int32, int16,
int8, uint32, uint16, uint8, logical, and char.

For more information about defining other types, see the following table.

Input Type Link

A structure (struct) “Specifying Structures” on page
16-23

A fixed-point data type
(embedded.fi)

“Specifying a Fixed-Point Input
Parameter by Type” on page 16-21

An input by example (Define by
Example)

“Define Input Parameters by
Example in a Project” on page 16-12

A constant (Define Constant) “Define Constant Input Parameters
in a Project” on page 16-30

1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

16-19

16 Setting Up a MATLAB® Coder™ Project

2 Optionally, for numeric types, select Complex number to make the
parameter a complex type. By default, inputs are real.

3 Select the input type.

The selected type is displayed for the input parameter together with size
options.

16-20

Define or Edit Input Parameter Type in a Project

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x
1 vector or a m x n matrix. By default, if you do not select a size option,
MATLAB Coder defines inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.

• Variable size, up to a specified limit, by using the : prefix. For example,
to specify that your input can vary in size up to 10, enter :10.

• Unbounded variable size by entering :Inf.

You can edit the size of each dimension after specifying it.

Specifying an Enumerated Type Input Parameter by
Type
To specify that an input uses the enumerated type MyColors:

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

classdef(Enumeration) MyColors < int32
enumeration

green(1),
red(2),

end
end

2 In the field to the right of the input parameter, enter MyColors.

Specifying a Fixed-Point Input Parameter by Type
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

1 On the Overview tab Entry-Point Files pane, click the box to the right of
the input parameter name to view the input options.

16-21

16 Setting Up a MATLAB® Coder™ Project

2 Select embedded.fi.

The Properties dialog box opens.

16-22

Define or Edit Input Parameter Type in a Project

3 In this dialog box, set up the input parameter numerictype and fimath
properties and then close the dialog box.

If you do not specify a local fimath, MATLAB Coder uses the default fimath.
For more information, see “Default fimath Usage to Share Arithmetic
Rules ”.

4 The size of the input defaults to 1x1. Optionally, modify the size by
selecting the dimension that you want to change and entering a new size.

Specifying Structures
When a primary input is a structure, MATLAB Coder treats each field as
a separate input. Therefore, you must specify properties for all fields of
a primary structure input in the order that they appear in the structure
definition, as follows:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

Specifying Structures by Type

1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

16-23

16 Setting Up a MATLAB® Coder™ Project

2 From the list of input options, select struct.

The selected type, struct, is displayed for the input parameter together
with size options.

16-24

Define or Edit Input Parameter Type in a Project

3 From the list, select whether your structure is a scalar, 1 x n vector, m x
1 vector or m x n matrix. By default, if you do not select a size option,
MATLAB Coder defines inputs as scalars.

4 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.

• Variable size, up to a specified limit, by using the : prefix. For example,
to specify that your input can vary in size up to 10, enter :10.

• Unbounded variable size by entering :Inf.

5 Optionally, add fields to the structure as described in “How to Add a Field
to a Structure” on page 16-28 and then set their size and complexity.

6 Optionally, specify properties for the structure in the generated code as
described in “How to Set Structure Properties” on page 16-25.

How to Set Structure Properties

1 To the right of the structure definition, click the Actions icon, ().

16-25

16 Setting Up a MATLAB® Coder™ Project

The structure properties dialog box opens.

2 Specify properties for the structure in the generated code.

Property Description

C type definition name Name to use for the structure
variable in the generated code.

Type definition is externally
defined

Default: No — type definition is
not externally defined

If you select ‘Yes’ to declare an
externally defined structure,
MATLAB Coder does not generate
the definition of the structure type;
you must provide it in a custom
include file.

Dependency: This option is enabled
by C type definition name.

16-26

Define or Edit Input Parameter Type in a Project

Property Description

C type definition header file Name of the header file that
contains the external definition
of the structure, for example,
"mystruct.h". Specify the path
to the file using the Additional
include directories parameter on
the Project Settings dialog box
Custom Code tab.
By default, the generated code
contains #include statements
for custom header files after
the standard header files. If a
standard header file refers to the
custom structure type, then the
compilation fails. By specifying
the C type definition header file
option, MATLAB Coder includes
that header file exactly at the point
where it is required.

Must be a non-empty string.

Dependency: This option is
enabled when Type definition
is externally defined is set to
Yes.

Data alignment boundary The run-time memory alignment
of structures of this type in bytes.
If you have an Embedded Coder
license and use Code Replacement
Libraries (CRLs), the CRLs
provide the ability to align data
objects passed into a replacement
function to a specified boundary.
This capability allows you to
take advantage of target-specific
function implementations that
require data to be aligned to
optimize application performance.

16-27

16 Setting Up a MATLAB® Coder™ Project

Property Description

By default, the structure is not
aligned on any specific boundary
so it will not be matched by CRL
functions that require alignment.

Alignment must be either -1 or a
power of 2 that is no more than 128.

Default: 0

Dependency: This option is
enabled when Type definition
is externally defined is set to
Yes.

How to Rename a Field in a Structure
On the project Overview tab, select the name field of the structure that you
want to rename and enter the new name.

How to Add a Field to a Structure

1 On the project Overview tab, select the structure to which you want to
add a field.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Add Field.

If the structure already contains other fields, MATLAB Coder adds the
field after the existing fields.

4 Enter the field name and define its type.

How to Insert a Field into a Structure

1 On the project Overview tab, select the field under which you want to
add another field.

16-28

Define or Edit Input Parameter Type in a Project

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Insert Field.

MATLAB Coder adds the field after the selected field.

4 Enter the field name and define its type.

How to Remove a Field from a Structure

1 In the project Overview tab, select the field that you want to remove.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Remove Field.

16-29

16 Setting Up a MATLAB® Coder™ Project

Define Constant Input Parameters in a Project
1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

2 Select Define Constant.

3 In the field to the right of the parameter name, enter the value of the
constant or a MATLAB expression that represents the constant.

MATLAB Coder software uses the value of the specified MATLAB
expression as a compile-time constant.

16-30

Define Inputs Programmatically in the MATLAB® File

Define Inputs Programmatically in the MATLAB File
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB entry-point files.

To enable this option, on the Project Settings dialog box Advanced pane,
select Determine input types from source code preconditions. If you
enable this option:

• MATLAB Coder labels all entry-point function inputs as Deferred and
determines the input types at compile time.

• You cannot specify input types in this project using any other input
specification method.

For more information, see “Define Input Properties Programmatically in the
MATLAB File” on page 19-50.

16-31

16 Setting Up a MATLAB® Coder™ Project

Adding Global Variables in a Project
To add global variables to the project:

1 On the project Overview tab, click Add global.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

2 Enter the name of the global variable.

3 After adding a global variable, before building the project, specify its type
and initial value. If you do not do this, you must create a variable with the
same name in the global workspace. See “Specifying Global Variable Type
and Initial Value in a Project” on page 16-33.

16-32

Specifying Global Variable Type and Initial Value in a Project

Specifying Global Variable Type and Initial Value in a
Project

In this section...

“Why Specify a Type Definition for Global Variables?” on page 16-33

“How to Specify a Global Variable Type” on page 16-33

“Defining a Global Variable by Example” on page 16-34

“Defining or Editing Global Variable Type” on page 16-35

“Defining Global Variable Initial Value” on page 16-37

“Removing Global Variables” on page 16-39

Why Specify a Type Definition for Global Variables?
If you use global variables in your MATLAB algorithm, before building the
project, you must add a global type definition and initial value for each. If
you do not initialize the global data, MATLAB Coder looks for the variable
in the MATLAB global workspace. If the variable does not exist, MATLAB
Coder generates an error.

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable. At code
generation time, MATLAB Coder needs to have an initial value to determine
the type of a global variable. Otherwise, the global variable might be used
before it is defined and then MATLAB Coder cannot determine the type to use
in the generated code.

For MEX functions, if you use global data, you must also specify whether to
synchronize this data between MATLAB and the MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 19-83.

How to Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example

• Define type

16-33

16 Setting Up a MATLAB® Coder™ Project

2 Define an initial value for each global variable.

If you do not provide a type definition and initial value for a global variable,
you must create a variable with the same name and suitable class, size,
complexity, and value in the MATLAB workspace.

Defining a Global Variable by Example

1 On the project Overview tab, click the field to the right of the global
variable that you want to define.

2 Select Define by Example.

3 In the field to the right of the global name, enter a MATLAB expression
that has the required class, size, and complexity. MATLAB Coder software
uses the class, size, and complexity of the value of this expression as the
type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that
you want to change and enter the size, for example, 10.

16-34

Specifying Global Variable Type and Initial Value in a Project

You can specify:

• Fixed size. In this example, select 10.

• Variable size, up to a specified limit, by using the : prefix. In this
example, to specify that your input can vary in size up to 10, select :10.

• Unbounded variable size by selecting :Inf.

Note You define global variables in the same way that you define input
parameters. For more information, see “Define Input Parameters by Example
in a Project” on page 16-12

Defining or Editing Global Variable Type

1 On the project Overview tab, click the field to the right of the global
variable that you want to define.

16-35

16 Setting Up a MATLAB® Coder™ Project

2 Optionally, for numeric types, select Complex to make the parameter a
complex type. By default, inputs are real.

3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.

4 Optionally, change the size of the global variable. Click the dimension that
you want to change and enter the size, for example, 10.

You can specify:

16-36

Specifying Global Variable Type and Initial Value in a Project

• Fixed size. In this example, select 10.

• Variable size, up to a specified limit, by using the : prefix. In this
example, to specify that your input can vary in size up to 10, select :10.

• Unbounded variable size by selecting :Inf.

Defining Global Variable Initial Value

• “Define Initial Value Before Defining Type” on page 16-37

• “Define Initial Value After Defining Type” on page 16-38

Define Initial Value Before Defining Type

1 On the project Overview tab, click the field to the right of the global
variable.

2 Select Define Initial Value.

3 Enter a MATLAB expression. MATLAB Coder software uses the value
of the specified MATLAB expression as the value of the global variable.

16-37

16 Setting Up a MATLAB® Coder™ Project

Because you did not define the type of the global variable before you defined
its initial value, MATLAB Coder uses the type of the initial value as the
global variable type.

The project displays that the global variable is initialized.

If you change the type of a global variable after defining its initial value,
you must redefine the initial value.

Define Initial Value After Defining Type

1 On the project Overview tab, click the type field of the global variable.

2 Select Define Initial Value.

16-38

Specifying Global Variable Type and Initial Value in a Project

3 Enter a MATLAB expression. MATLAB Coder software uses the value of
the specified MATLAB expression as the value of the global variable.

The project displays that the global variable is initialized.

Removing Global Variables

1 On the project Overview tab, select the global variable that you want to
remove.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3 From this menu, select Remove Global.

MATLAB Coder removes the global variable.

16-39

16 Setting Up a MATLAB® Coder™ Project

Specify Output File Name
On the project Build tab, in the Output file field, enter the file name. The
file name can include an existing path.

Note Do not put any spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

To learn how to change the default output folder, see “Specify Output File
Locations” on page 16-41.

Command Line Alternative
Use the codegen function -o option.

16-40

Specify Output File Locations

Specify Output File Locations
The path should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– dll for dynamic C/C++ libraries

– lib for static C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

16-41

16 Setting Up a MATLAB® Coder™ Project

Selecting Output Type
On the project Build tab, from the Output type drop-down list, select one of
the available output types:

• MEX Function (default)

• Instrumented MEX Function

Building an instrumented MEX function requires a Fixed-Point Toolbox
license and clears any prior instrumentation results.

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

Command Line Alternative
Use the codegen function -config option.

Changing Output Type
MEX functions use a different set of configuration parameters than C/C++
libraries and executables use. When you switch the output type between
MEX Function or Instrumented MEX Function and C/C++ Static Library,
C/C++ Dynamic Library or C/C++ Executable, you should verify these
settings.

If you enable any of the following parameters that are available for all
output types when the output type is MEX Function or Instrumented MEX
Function, and you want to use the same setting for C/C++ code generation as
well, you must enable it again for C/C++ Static Library, C/C++ Dynamic
Library, and C/C++ Executable.

16-42

Selecting Output Type

Check These MATLAB Coder Project Parameters When
Changing Output Type

Project Settings Dialog
Box Tab

Parameter Name

Working folder

Build folder

Paths

Search paths

Speed Saturate on integer overflow

Enable variable-sizing

Dynamic memory allocation

Memory

Stack usage max

Generated file partitioning method

Include comments

MATLAB source code as comments

Code Appearance

Reserved names

Always create a code generation reportDebugging

Automatically launch a report if one is
generated

Source file

Header file

Initialize function

Terminate function

Additional include directories

Additional source files

Additional libraries

Custom Code

Post-code-generation command

16-43

16 Setting Up a MATLAB® Coder™ Project

Project Settings Dialog
Box Tab

Parameter Name

Constant folding timeout

Language

Inline threshold

Inline threshold max

Inline stack limit

Use memcpy for vector assignment

Memcpy threshold (bytes)

Advanced

Use memset to initialize floats and doubles
to 0.0

Check These Command-Line Parameters When Changing
Output Type
When you switch between MEX and C output types, check these
coder.MexCodeConfig, coder.CodeConfig or coder.EmbeddedCodeConfig
configuration object parameters, as applicable.

• ConstantFoldingTimeout

• CustomHeaderCode

• CustomInclude

• CustomInitializer

• CustomLibrary

• CustomSource

• CustomSourceCode

• CustomTerminator

• DynamicMemoryAllocation

• EnableMemcpy

• EnableVariableSizing

16-44

Selecting Output Type

• FilePartitionMethod

• GenCodeOnly

• GenerateComments

• GenerateReport

• InitFltsAndDblsToZero

• InlineStackLimit

• InlineThreshold

• InlineThresholdMax

• LaunchReport

• MATLABSourceComments

• MemcpyThreshold

• PostCodeGenCommand

• ReservedNameArray

• SaturateOnIntegerOverflow

• StackUsageMax

• TargetLang

16-45

16 Setting Up a MATLAB® Coder™ Project

16-46

17

Preparing MATLAB Code
for C/C++ Code Generation

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Fixing Errors Detected at Design Time” on page 17-4

• “Using the Code Analyzer” on page 17-5

• “Check Code With the Code Analyzer” on page 17-6

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

• “Code Generation Readiness Tool” on page 17-10

• “Unable to Determine Code Generation Readiness” on page 17-16

• “Generate MEX Functions Using the MATLAB® Coder™ Project Interface”
on page 17-17

• “Generate MEX Functions at the Command Line” on page 17-25

• “Fix Errors Detected at Code Generation Time” on page 17-27

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 17-28

• “Running MEX Functions” on page 17-30

• “Debugging Strategies” on page 17-31

17 Preparing MATLAB® Code for C/C++ Code Generation

Workflow for Preparing MATLAB Code for Code
Generation

17-2

Workflow for Preparing MATLAB® Code for Code Generation

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Fixing Errors Detected at Design Time” on page 17-4

• “Generate MEX Functions Using the MATLAB® Coder™ Project Interface”
on page 17-17

• “Fix Errors Detected at Code Generation Time” on page 17-27

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• Chapter 19, “Generating C/C++ Code from MATLAB Code”

• Chapter 21, “Accelerating MATLAB Algorithms”

17-3

17 Preparing MATLAB® Code for C/C++ Code Generation

Fixing Errors Detected at Design Time
Use the code analyzer and the code generation readiness tool to detect issues
at design time. Before generating code, you must fix these issues.

See Also

• “Check Code With the Code Analyzer” on page 17-6

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 17-28

• “Debugging Strategies” on page 17-31

17-4

Using the Code Analyzer

Using the Code Analyzer
You use the code analyzer in the MATLAB Editor to check for code
violations at design time, minimizing compilation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications to maximize performance and maintainability.

To use the code analyzer to identify warnings and errors specific to MATLAB
for code generation, you must add the %#codegen directive (or pragma) to
your MATLAB file. A complete list of code generation analyzer messages is
available in the MATLAB Code Analyzer preferences. For more information,
see “Running the Code Analyzer Report”.

Note The code analyzer might not detect all MATLAB for code generation
issues. After eliminating any errors or warnings that the code analyzer
detects, compile your code with MATLAB Coder to determine if the code has
other compliance issues.

17-5

17 Preparing MATLAB® Code for C/C++ Code Generation

Check Code With the Code Analyzer
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code interactively in the MATLAB Editor
while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.

2 In the Preferences dialog box, select Code Analyzer.

3 In the Code Analyzer Preferences pane, verify that Enable integrated
warning and error messages is selected.

The code analyzer provides an indicator in the top right of the editor window.
If the indicator is green, the analyzer has detected no code generation issues.

If the indicator is red, the analyzer has detected errors in your code. If it is
orange, it has detected warning. When the indicator is red or orange, a red
or orange marker appears to the right of the code where the error occurs.
Place your pointer over the marker for information about the error. Click
the underlined text in the error message for a more detailed explanation
and suggested actions to fix the error.

17-6

Check Code With the Code Analyzer

Before generating code from your MATLAB code, you must fix any errors
detected by the code analyzer.

17-7

17 Preparing MATLAB® Code for C/C++ Code Generation

Check Code Using the Code Generation Readiness Tool

In this section...

“Run Code Generation Readiness Tool at the Command Line” on page 17-8

“Run Code Generation Readiness Tool from the Current Folder Browser”
on page 17-8

“Run the Code Generation Readiness Tool in a Project” on page 17-9

“See Also” on page 17-9

Run Code Generation Readiness Tool at the
Command Line

1 Navigate to the folder that contains the file that you want to check for
code generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename,
provides a code generation readiness score, and lists issues that must be
fixed prior to code generation.

Run Code Generation Readiness Tool from the
Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for
code generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file. It
provides a code generation readiness score and lists issues that must be
fixed prior to code generation.

17-8

Check Code Using the Code Generation Readiness Tool

Run the Code Generation Readiness Tool in a Project

1 After you have added entry-point files to the project, if MATLAB Coder
detects code generation issues, it displays a link at the top of the project
window.

If MATLAB Coder detects no issues, it does not display this link.

2 Click the link to open the Code Generation Readiness tool.

The tool opens and provides a code generation readiness score and lists
issues that must be fixed prior to code generation.

See Also

• “Code Generation Readiness Tool” on page 17-10

17-9

17 Preparing MATLAB® Code for C/C++ Code Generation

Code Generation Readiness Tool

In this section...

“What Information Does the Code Generation Readiness Tool Provide?” on
page 17-10

“Summary Tab” on page 17-11

“Code Structure Tab” on page 17-12

“See Also” on page 17-15

What Information Does the Code Generation
Readiness Tool Provide?
The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and
functions. The report also provides an indication of how much work you
must do to make the MATLAB code suitable for code generation. The tool
might not detect all code generation issues. Under certain circumstances, it
might report false errors. Because the tool might not detect all issues, or
might report false errors, generate a MEX function to verify that your code is
suitable for code generation before generating C code.

17-10

Code Generation Readiness Tool

Summary Tab

The Summary tab provides a Code Generation Readiness Score which
ranges from 1 to 5. A score of 1 indicates that the tool has detected issues that
require extensive changes to the MATLAB code to make it suitable for code
generation. A score of 5 indicates that the tool has not detected any code
generation issues; the code is ready to use with no or minimal changes.

17-11

17 Preparing MATLAB® Code for C/C++ Code Generation

On this tab, the tool also provides information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor.
Use the code analyzer to learn more about the issues and how to fix them.

• Unsupported MATLAB function calls.

• Unsupported MATLAB language features, such as recursion, cell arrays,
nested functions, and function handles.

• Unsupported data types.

Code Structure Tab

17-12

Code Generation Readiness Tool

If the code that you are checking calls other MATLAB functions, or you
are checking multiple entry-point functions, the tool displays the Code
Structure Tab.

This tab provides information about the relative size of each file and how
suitable each file is for code generation.

Code Distribution
The Code Distribution pane provides a pie chart that shows the relative
sizes of the files and how suitable each file is for code generation. This
information is useful during the planning phase of a project for estimation
and scheduling purposes. If the report indicates that there are multiple files
not yet suitable for code generation, consider fixing files that require minor
changes before addressing files with significant issues.

Call Tree
The Call Tree pane provides information on the nesting of function calls. For
each called function, the report provides a Code Generation Readiness
score which ranges from 1 to 5. A score of 1 indicates that the tool has detected
issues that require extensive changes to the MATLAB code to make it suitable
for code generation. A score of 5 indicates that the tool has not detected any
code generation issues; the code is ready to use with no or minimal changes.
The report also lists the number of lines of code in each file.

Show MATLAB Functions. If you select Show MATLAB Functions, the
report also lists all the MATLAB functions called by your function code.
For each of these MATLAB functions, if the function is supported for code
generation, the report sets Code Generation Readiness to Yes.

17-13

17 Preparing MATLAB® Code for C/C++ Code Generation

17-14

Code Generation Readiness Tool

See Also

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

17-15

17 Preparing MATLAB® Code for C/C++ Code Generation

Unable to Determine Code Generation Readiness
Sometimes the code generation readiness tool cannot determine whether
the entry-point functions in your project are suitable for code generation.
The most likely reason is that the tool is unable to find the entry-point files.
Verify that your current working folder is set to the folder that contains your
entry-point files. If it is not, either make this folder your current working
folder or add the folder containing these files to the MATLAB path.

17-16

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

Generate MEX Functions Using the MATLAB Coder Project
Interface

In this section...

“Project Workflow for Generating MEX Functions” on page 17-17

“Generate MEX Functions Using the Project Interface” on page 17-17

“Configure Project Settings” on page 17-22

“Build a MATLAB® Coder™ Project” on page 17-23

“See Also” on page 17-24

Project Workflow for Generating MEX Functions

Step Action Details

1 Set up your MATLAB Coder project. “Creating a New Project” on page 16-3

2 Fix any errors detected by the code
analyzer.

“Fixing Errors Detected at Design Time” on
page 17-4

3 Specify build configuration parameters. “Configure Project Settings” on page 17-22

4 Build the project. “Build a MATLAB® Coder™ Project” on
page 17-23

Generate MEX Functions Using the Project Interface
In this example, you create a MATLAB function that adds two numbers, then
create a MATLAB Coder project for this file. Using the project user interface,
you specify types for the function input parameters, and then generate a
MEX function for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

17-17

17 Preparing MATLAB® Code for C/C++ Code Generation

a At the MATLAB command line, enter

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

17-18

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

b On the project Overview tab, click the Add files link, browse to the
file mcadd.m, and click OK to add the file to the project.

The file is displayed on the Overview tab, and both inputs are
undefined.

c On the Overview tab, click the field to the right of the input parameter
u and, from the list of input options, select int16.

17-19

17 Preparing MATLAB® Code for C/C++ Code Generation

d From the list of size options, select 1 x 1 to specify that the input is a
scalar.

17-20

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

e Repeat the previous two steps to specify the input v.

3 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file name
is mcadd_mex.

17-21

17 Preparing MATLAB® Code for C/C++ Code Generation

4 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, mcadd_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mexfcn/mcadd.
MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files and creates a platform-specific extension for the
MEX file, as described in “Naming Conventions” on page 19-70.

You can now test your MEX function in MATLAB. For more information,
see “Verify MEX Functions in a Project” on page 18-6.

Configure Project Settings

1 On the project Build tab, click the More settings link to view the project
settings for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you change the output type from
MEX Function or Instrumented MEX Function to C/C++ Static Library,
C/C++ Dynamic Libraryor C/C++ Executable, verify these settings. For
more information, see “Changing Output Type” on page 16-42.

17-22

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

2 In the Project Settings dialog box, select the settings that you want to
apply.

Tip To learn more about the configuration parameters on the current tab
of the Project Settings dialog box, click the Help button.

See Also

• “How to Enable Code Generation Reports in the Project Settings Dialog
Box” on page 19-177

• “In the Project Settings Dialog Box” on page 19-118

• “How to Disable Inlining Globally in the Project Settings Dialog Box” on
page 19-129

• “Generate Traceable Code” on page 19-89

• “Disabling Run-Time Checks in the Project Settings Dialog Box” on page
21-22

• “Disabling BLAS Library Support in the Project Settings Dialog Box” on
page 21-19

Build a MATLAB Coder Project
On the project Build tab, click the Build button to build the project using
the specified settings. While MATLAB Coder builds a project, it displays the
build progress in the Build dialog box. When the build is complete, MATLAB
Coder provides details in the Build Results pane.

Viewing Build Results
The Build Results pane provides information about the most recent build. If
the code generation report is enabled or build errors occur, MATLAB Coder
generates a report that provides detailed information about the most recent
build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well

17-23

17 Preparing MATLAB® Code for C/C++ Code Generation

as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists all errors and warnings.

Saving Build Results
When MATLAB Coder builds a project, it displays the build progress and
results in the Build dialog box. To save the build results, click the Save to
log file link and specify the log file location.

See Also

• “Code Generation Reports” on page 19-174

• “Generate Code for Multiple Entry-Point Functions” on page 19-75

• “Generate Code for Global Data” on page 19-81

See Also

• “Generate Code for Multiple Entry-Point Functions” on page 19-75

• “Generate Code for Global Data” on page 19-81

• “Specify Output File Name” on page 16-40

• “Specify Output File Locations” on page 16-41

17-24

Generate MEX Functions at the Command Line

Generate MEX Functions at the Command Line

Command-line Workflow for Generating MEX
Functions

Step Action Details

1 Install prerequisite products. “Installing Prerequisite Products”

2 Set up your C/C++ compiler. “Setting Up the C/C++ Compiler”

3 Set up your file infrastructure. “Paths and File Infrastructure Setup” on
page 19-69

4 Fix any errors detected by the code
analyzer.

“Fixing Errors Detected at Design Time” on
page 17-4

5 Specify build configuration parameters. “Specify Build Configuration Parameters”
on page 19-28

6 Specify properties of primary function
inputs.

“Primary Function Input Specification” on
page 19-38

7 Generate the MEX function using codegen
with suitable command-line options.

“Generating MEX Functions at the
Command Line Using codegen” on page
17-26

Generate MEX Functions at the Command Line
In this example, you use the codegen function to generate a MEX function
from a MATLAB file that adds two inputs. You use the codegen -args option
to specify that both inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the
command line, specify that the two input parameters are int16 using the
-args option. By default, if you do not use the -args option, codegen treats
inputs as real, scalar doubles.

17-25

17 Preparing MATLAB® Code for C/C++ Code Generation

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder.
codegen also generates other supporting files in a subfolder called
codegen/mexfcn/mcadd.codegen uses the name of the MATLAB function
as the root name for the generated files and creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page
19-70.

Generating MEX Functions at the Command Line
Using codegen
You generate a MEX function at the command line using the codegen function.

The basic command is:

codegen fcn

By default, codegen generates a MEX function in the current folder as
described in “Generate MEX Functions at the Command Line” on page 17-25.

You can modify this default behavior by specifying one or more compiler
options with codegen, separated by spaces on the command line. For more
information, see codegen.

See Also

• “Primary Function Input Specification” on page 19-38

• “MEX Function Generation at the Command Line”

• “Generate Code for Multiple Entry-Point Functions” on page 19-75

• “Generate Code for Global Data” on page 19-81

17-26

Fix Errors Detected at Code Generation Time

Fix Errors Detected at Code Generation Time
When the code generation software detects errors or warnings, it
automatically generates an error report. The error report describes the issues
and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB
features that are supported for code generation. For more information,
see “MATLAB Algorithm Design Basics”. Choose a debugging strategy for
detecting and correcting code generation errors in your MATLAB code. For
more information, see “Debugging Strategies” on page 17-31.

When code generation is complete, the software generates a MEX function
that you can use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code
generation software determines that these functions should be extrinsic or
you declare them to be extrinsic, it attempts to compile these functions. See
“Resolution of Function Calls in MATLAB Generated Code” on page 13-2.
To get detailed diagnostics, add the %#codegen directive to each external
function that you want codegen to compile.

See Also

• “Code Generation Reports” on page 19-174

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “When to Generate Code from MATLAB Algorithms” on page 2-2

• “Debugging Strategies” on page 17-31

• “Declaring MATLAB Functions as Extrinsic Functions” on page 13-12

17-27

17 Preparing MATLAB® Code for C/C++ Code Generation

Design Considerations When Writing MATLAB Code for
Code Generation

When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

17-28

Design Considerations When Writing MATLAB® Code for Code Generation

- Consider disabling run-time checks.

By default, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks
result in more generated code and slower MEX function execution.
Disabling run-time checks usually results in streamlined generated code
and faster MEX function execution. Disable these checks only if you
have verified that array bounds and dimension checking is unnecessary.

See Also

• “MATLAB Algorithm Design Basics”

• “Data Definition”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Dynamic Memory Allocation” on page 19-99

• “Control Run-Time Checks” on page 21-21

17-29

17 Preparing MATLAB® Code for C/C++ Code Generation

Running MEX Functions
To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, you should rebuild MEX functions before
running them with the new version.

Debugging MEX Functions
You cannot use the disp and save functions during debugging to inspect the
contents of your MEX function variables. Because these functions are not
supported for code generation, you must declare them as extrinsic functions.
For extrinsic functions, when running the MEX function, MATLAB Coder
calls out to MATLAB to run disp and save, so they save and display the data
found in the base workspace, not the MEX-function workspace.

17-30

Debugging Strategies

Debugging Strategies
Before you perform code verification, choose a debugging strategy for
detecting and correcting noncompliant code in your MATLAB applications,
especially if they consist of a large number of MATLAB files that call each
other’s functions. The following table describes two general strategies, each of
which has advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your

lowest-level (leaf)
functions are compliant.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Unlikely to
cause errors

• Easy to isolate
code generation
syntax violations

Requires application tests
that work from the bottom up

17-31

17 Preparing MATLAB® Code for C/C++ Code Generation

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare all functions

called by the top-level
function to be extrinsic
so that MATLAB Coder
does not compile them.
See “Declaring MATLAB
Functions as Extrinsic
Functions” on page 13-12.

2 Verify that your top-level
function is compliant.

3 Work your way down
the function hierarchy
incrementally by
removing extrinsic
declarations one by one to
compile and verify each
function, ending with the
leaf functions.

You retain your
top-level tests

Introduces extraneous code
that you must remove after
code verification, including:
• Extrinsic declarations

• Additional assignment
statements as required
to convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working with
mxArrays” on page 13-17).

17-32

18

Testing MEX Functions in
MATLAB

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “Running MEX Functions” on page 18-5

• “Verify MEX Functions in a Project” on page 18-6

• “Verify MEX Functions at the Command Line” on page 18-9

• “Debug Run-Time Errors” on page 18-10

18 Testing MEX Functions in MATLAB®

Workflow for Testing MEX Functions in MATLAB

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

18-2

Workflow for Testing MEX Functions in MATLAB®

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “Debug Run-Time Errors” on page 18-10

• Chapter 19, “Generating C/C++ Code from MATLAB Code”

• Chapter 21, “Accelerating MATLAB Algorithms”

18-3

18 Testing MEX Functions in MATLAB®

Why Test MEX Functions in MATLAB?
Before generating C/C++ code for your MATLAB code, it is a best practice to
test the MEX function to verify that it provides the same functionality as
the original MATLAB code. To do this testing, run the MEX function using
the same inputs as you used to run the original MATLAB code and compare
the results. For more information about how to test a MEX function in a
project, see “Verify MEX Functions in a Project” on page 18-6. For more
information on how to test a MEX function at the command line, see “Verify
MEX Functions at the Command Line” on page 18-9.

In addition, running the MEX function in MATLAB before generating code
enables you to detect and fix run-time errors that are much harder to diagnose
in the generated code. If you encounter run-time errors in your MATLAB
functions, fix them before generating code. For more information, see “Debug
Run-Time Errors” on page 18-10.

When you run your MEX function in MATLAB, by default, the following
run-time checks execute :

• Memory integrity checks. These checks perform array bounds checking,
dimension checking, and detect violations of memory integrity in code
generated for MATLAB functions. If a violation is detected, MATLAB stops
execution and provides a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These
checks enable periodic checks for Ctrl+C breaks in code generated for
MATLAB functions, allowing you to terminate execution with Ctrl+C at
any time.

For more information, see “Control Run-Time Checks” on page 21-21.

18-4

Running MEX Functions

Running MEX Functions
To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new
version, rebuild the MEX functions.

Debugging MEX Functions
You cannot use the disp and save functions during debugging to inspect the
contents of your MEX function variables. Because these functions are not
supported for code generation, you must declare them as extrinsic functions.
For extrinsic functions, when running the MEX function, MATLAB Coder
calls out to MATLAB to run disp and save, so they save and display the data
found in the base workspace, not the MEX-function workspace.

18-5

18 Testing MEX Functions in MATLAB®

Verify MEX Functions in a Project

In this section...

“Using Test Files That Call Only MATLAB Functions” on page 18-6

“Using Test Files That Call MEX Functions” on page 18-7

Using Test Files That Call Only MATLAB Functions
If you have a test file that calls only your original entry-point MATLAB
function, use the following procedure. A test file can be either a MATLAB
function or a script. To use this procedure, you should verify that it calls at
least one entry-point function. The generated MEX function must be in the
same folder as the entry-point functions.

Selecting the Redirect entry-point calls to MEX function option directs
MATLAB Coder software to replace calls to the MATLAB function with calls
to the generated MEX function. This capability allows you to compare the
behavior of the MEX function with that of the original function.

If your test file calls the generated MEX function, do not follow this procedure.
Instead, follow the procedure in “Using Test Files That Call MEX Functions”
on page 18-7.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file calling the original MATLAB algorithm.

a Clear Rebuild MEX function.

b Clear Redirect entry-point calls to MEX function.

c Click the Run button.

The test file runs and calls your original MATLAB algorithm.

3 Verify that the test results are as expected.

18-6

Verify MEX Functions in a Project

4 Run the test file calling the MEX function instead of the original MATLAB
algorithm.

a Select Rebuild MEX function.

b Select Redirect entry-point calls to MEX function.

c Click the Run button.

The project builds the MEX function. The test file runs and automatically
replaces calls to your original MATLAB algorithm with calls to the
generated MEX function.

5 Compare the results of the two runs to verify that the MEX function
provides the same functionality as the original MATLAB algorithm.

Using Test Files That Call MEX Functions
If you have a test file that calls the generated MEX function, use the following
procedure. If your test file calls both the original MATLAB function and the
generated MEX function, you can also use this procedure.

A test file can be either a MATLAB function or a script. To use this procedure,
you should verify that it calls at least one MEX function. The MEX function
must be in the same folder as the entry-point functions.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file.

a Select Rebuild MEX function.

b Clear Redirect entry-point calls to MEX function.

Because the test file already calls the MEX function, you do not want
MATLAB Coder to redirect entry-point function calls.

c Click the Run button.

The project builds the MEX function. The test file runs and calls the
generated MEX function. If applicable, it also calls the original MATLAB
algorithm.

18-7

18 Testing MEX Functions in MATLAB®

3 Use the results of this run to verify that the MEX function provides the
same functionality as the original MATLAB algorithm.

18-8

Verify MEX Functions at the Command Line

Verify MEX Functions at the Command Line
If you have a test file that calls your original MATLAB function, use
coder.runTest to verify the MEX function at the command line.
coder.runTest runs the test file replacing calls to the original MATLAB
function with calls to the generated MEX function. For more information, see
the coder.runTest function reference information and “Verifying the MEX
Function” in the MATLAB Coder “C Code Generation at the Command Line”
tutorial.

18-9

18 Testing MEX Functions in MATLAB®

Debug Run-Time Errors

In this section...

“Viewing Errors in the Run-Time Stack” on page 18-10

“Handling Run-Time Errors” on page 18-12

If you encounter run-time errors in your MATLAB functions, the run-time
stack appears automatically in the MATLAB command window. Use the error
message and stack information to learn more about the source of the error and
then either fix the issue or add error-handling code. For more information, see
“Viewing Errors in the Run-Time Stack” on page 18-10“Handling Run-Time
Errors” on page 18-12.

Viewing Errors in the Run-Time Stack

About the Run-Time Stack
The run-time stack is enabled by default for MEX code generation from
MATLAB. Use the error message and the following stack information to learn
more about the source of the error:

• The name of the function that generated the error

• The line number of the attempted operation

• The sequence of function calls that led up to the execution of the function
and the line at which each of these function calls occurred

18-10

Debug Run-Time Errors

Example Run-Time Stack Trace. This example shows the run-time stack
trace for MEX function mlstack_mex:

mlstack_mex(-1)

Index exceeds matrix dimensions. Index
value -1 exceeds valid range [1-4] of
array x.

Error in mlstack>mayfail (line 31)
y = x(u);

Error in mlstack>subfcn1 (line 5)
switch (mayfail(u))

Error in mlstack (line 2)
y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.
Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31
y = x(u);

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5
switch (mayfail(u))

Error in ==> mlstack at 2
y = subfcn1(u);

When to Use the Run-Time Stack
The run-time stack is useful during debugging to help you find the source of
run-time errors. However, when the stack is enabled, the generated code

18-11

18 Testing MEX Functions in MATLAB®

contains instructions for maintaining the run-time stack, which might slow
performance. Consider disabling the run-time stack for faster performance.

How to Disable the Run-Time Stack. You can disable the run-time stack
by disabling the memory integrity checks as described in “How to Disable
Run-Time Checks” on page 21-22.

Caution Before disabling the memory integrity checks, you should verify
that all array bounds and dimension checking is unnecessary.

Handling Run-Time Errors
The code generation software propagates error ID’s. If you throw an error or
warning in your MATLAB code, use the try-catch statement in your test
bench code to examine the error information and attempt to recover, or clean
up and abort. For example, for the function in “Example Run-Time Stack
Trace” on page 18-11, create a test script containing:

try
mlstack_mex(u)

catch
% Add your error handling code here

end

For more information, see “The try/catch Statement”.

18-12

19

Generating C/C++ Code
from MATLAB Code

• “Code Generation Workflow” on page 19-3

• “C/C++ Code Generation” on page 19-5

• “Generating C/C++ Static Libraries from MATLAB Code” on page 19-7

• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code” on
page 19-11

• “Generating Standalone C/C++ Executables from MATLAB Code” on page
19-15

• “Build Setting Configuration” on page 19-21

• “Share Build Configuration Settings” on page 19-35

• “Primary Function Input Specification” on page 19-38

• “Define Input Properties Programmatically in the MATLAB File” on page
19-50

• “Speed Up Compilation” on page 19-61

• “Code Optimization” on page 19-63

• “Paths and File Infrastructure Setup” on page 19-69

• “Generate Code for Multiple Entry-Point Functions” on page 19-75

• “Generate Code for Global Data” on page 19-81

• “Generation of Traceable Code” on page 19-88

• “Generate Code for Enumerated Types” on page 19-97

• “Generate Code for Variable-Size Data” on page 19-98

19 Generating C/C++ Code from MATLAB® Code

• “Code Generation for MATLAB Classes” on page 19-117

• “How MATLAB® Coder™ Partitions Generated Code” on page 19-118

• “Customize the Post-Code-Generation Build Process” on page 19-132

• “Code Generation Reports” on page 19-174

• “Troubleshooting” on page 19-193

• “Package Code For Use in Another Development Environment” on page
19-194

19-2

Code Generation Workflow

Code Generation Workflow

19-3

19 Generating C/C++ Code from MATLAB® Code

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Build Setting Configuration” on page 19-21

• “C/C++ Code Generation” on page 19-5

• “Code Optimization” on page 19-63

19-4

C/C++ Code Generation

C/C++ Code Generation
Using MATLAB Coder, you can generate standalone C/C++ static and
dynamic libraries and C/C++ executables. If you specify C++, MATLAB Coder
wraps the C code into .cpp files so that you can use a C++ compiler and
interface with external C++ applications. It does not generate C++ classes. By
default, MATLAB Coder, if no code generation errors occur, MATLAB Coder
generates a platform-specific MEX function in the current folder.

To learn how to generate... See...

C/C++ static libraries from your
MATLAB code

“Generating C/C++ Static Libraries
from MATLAB Code” on page 19-7

C/C++ dynamic libraries from your
MATLAB code

“Generating C/C++ Dynamically
Linked Libraries from MATLAB
Code” on page 19-11

C/C++ executables from your
MATLAB code

“Generating Standalone C/C++
Executables from MATLAB Code”
on page 19-15

MEX functions from your MATLAB
code

“Generate MEX Functions Using
the MATLAB® Coder™ Project
Interface” on page 17-17

If errors occur, MATLAB Coder does not generate code, but produces an error
report and provides a link to this report. For more information, see “Code
Generation Reports” on page 19-174.

Specify Custom Files to Build
In addition to your MATLAB file, you can specify the following types of custom
files to include in the build for standalone C/C++ code generation.

File Extension Description

.c Custom C file

.cpp Custom C++ file

.h Custom header file

19-5

19 Generating C/C++ Code from MATLAB® Code

File Extension Description

.o , .obj Custom object file

.a , .lib, .so Library

.tmf Template makefile for custom
MATLAB Coder builds

19-6

Generating C/C++ Static Libraries from MATLAB® Code

Generating C/C++ Static Libraries from MATLAB Code

In this section...

“Generate a C Static Library Using the Project Interface” on page 19-7

“Generate a C Static Library at the Command Line” on page 19-10

Generate a C Static Library Using the Project Interface
This example shows how to generate a C static library from MATLAB code
using a MATLAB Coder project.

In this example, you create a MATLAB function that adds two numbers.
You then create a MATLAB Coder project. Use the project user interface to
generate a C static library for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the
file mcadd.m. Click OK to add the file to the project.

The file is displayed on the Overview tab. Both inputs are undefined.

3 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and, from the list of input options, select int16.

19-7

19 Generating C/C++ Code from MATLAB® Code

b From the list of size options, select 1 x 1 to specify that the input is a
scalar.

19-8

Generating C/C++ Static Libraries from MATLAB® Code

4 Repeat the previous step for input v.

5 In the MATLAB Coder project, click the Build tab.

6 On this tab, set the Output type to C/C++ Static library.

The default output file name is mcadd.

7 Click the Build button to generate a library using the default project
settings.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

19-9

19 Generating C/C++ Code from MATLAB® Code

Generate a C Static Library at the Command Line
This example shows how to generate a C static library from MATLAB code
at the command line using the codegen function.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Using the config:lib option, generate C library files. Using the -args
option, specify that the first input is a 1-by-4 vector of unsigned 16-bit
integers and that the second input is a double-precision scalar.

codegen -config:lib mcadd -args {zeros(1,4,'uint16'),0}

MATLAB Coder generates a C static library with the default name, mcadd,
and supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

19-10

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code

In this section...

“Dynamic Libraries Generated by MATLAB® Coder™” on page 19-11

“Generate a C Dynamically Linked Library (DLL) Using the Project
Interface” on page 19-11

“Generate a C Dynamic Library at the Command Line” on page 19-13

Dynamic Libraries Generated by MATLAB Coder
By default, when MATLAB Coder generates a dynamic library (DLL):

• The DLL is suitable for the platform that you are working on.

• The DLL uses the release version of the C run-time library.

• The DLL linkage conforms to the target language, by default, C. If you set
the target language to C++, the linkage conforms to C++.

• When the target language is C, the generated header files explicitly declare
the exported functions to be extern "C" to simplify integration of the DLL
into C++ applications.

If you generate a DLL that uses dynamically allocated variable-size data,
MATLAB Coder automatically provides exported utility functions to interact
with this data in the generated code. For more information, see “Utility
Functions for Creating emxArray Data Structures” on page 7-21.

Generate a C Dynamically Linked Library (DLL) Using
the Project Interface
This example shows how to generate a C DLL from MATLAB code using a
MATLAB Coder project.

In this example, you create a MATLAB function that generates a random
scalar value. You then create a MATLAB Coder project. Use the project user
interface to generate a C dynamic library for the MATLAB code.

19-11

19 Generating C/C++ Code from MATLAB® Code

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 In the same folder as the ep1 and ep2 files, set up a MATLAB Coder
project. At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right side.

3 On the project Overview tab, click the Add files link and browse to the
file ep1.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
input u is undefined.

4 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and then, from the list of input options, select single.

b From the list of size options, select 1 x 1 to specify that u is a scalar.

5 On the project Overview tab, click the Add files link and browse to the
file ep2.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
inputs u and v are undefined.

6 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and then, from the list of input options, select double.

b From the list of size options, select 1 x 1 to specify that u is a scalar.

19-12

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

7 Repeat the previous step for input v.

8 In the MATLAB Coder project, click the Build tab.

9 On the Build tab, set the Output type to C/C++ Dynamic Library.

10 On the Build tab, click the Build button to generate a library using these
project settings.

On Microsoft® Windows systems, MATLAB Coder generates a C
dynamic library, ep1.dll, and supporting files, in the default folder,
codegen/dll/coderand. It generates the minimal set of #include
statements for header files required by the selected code replacement
library. On Linux® and Macintosh systems, it generates a shared object
(.so) file. The DLL linkage conforms to the target language, in this example,
C. If you set the target language to C++, the linkage conforms to C++.

Generate a C Dynamic Library at the Command Line
This example shows how to generate a C dynamic library from MATLAB code
at the command line using the codegen function.

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 Generate the C dynamic library.

codegen -config:dll ep1 -args single(0) ep2 -args {0,0}

On Microsoft Windows systems, codegen generates a C dynamic
library, ep1.dll, and supporting files, in the default folder,
codegen/dll/coderand. It generates the minimal set of #include
statements for header files required by the selected code replacement

19-13

19 Generating C/C++ Code from MATLAB® Code

library. On Linux and Macintosh systems, it generates a shared object (.so)
file. The DLL linkage conforms to the target language, in this example, C.
If you set the target language to C++, the linkage conforms to C++.

Note The default target language is C. To change the target language to
C++, see “Specify a Language for Code Generation” on page 19-24.

19-14

Generating Standalone C/C++ Executables from MATLAB® Code

Generating Standalone C/C++ Executables from MATLAB
Code

In this section...

“Generate a C Executable Using the Project Interface” on page 19-15

“Generate a C Executable at the Command Line” on page 19-17

“Specifying main Functions for C/C++ Executables” on page 19-19

“Specify main Functions” on page 19-19

Generate a C Executable Using the Project Interface
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then create a MATLAB Coder project. Use the project user interface to specify
types for the function input parameters, specify the main function, and
generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

19-15

19 Generating C/C++ Code from MATLAB® Code

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h. If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h.

3 In the same folder as the coderand file, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new coderand.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link and browse to
the file coderand.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates
that the coderand function has no inputs.

4 In the MATLAB Coder project, click the Build tab.

a Set the Output type to C/C++ Executable.

b Set the output file name to coderand_exe.

5 On the project Build tab, click the More settings link.

6 On the Project Settings dialog box Custom Code tab, under Additional
files and directories to be built, set:

a Source files to main.c, which is the name of the C/C++ source file that
contains the main function.

19-16

Generating Standalone C/C++ Executables from MATLAB® Code

b Include directories to the location of main.c: c:\myfiles.

c Close the dialog box.

Note When you are building an executable, you must specify the main
function. For more information, see “Specifying main Functions for C/C++
Executables” on page 19-19.

7 On the Build tab, click the Build button to generate a library using the
default project settings.

MATLAB Coder compiles and links the main function with the C code
that it generates for the project and, in the current folder, generates an
executable, coderand_exe. It generates supporting files in the default
folder, codegen/exe/coderand. MATLAB Coder generates the minimal
set of #include statements for header files required by the selected code
replacement library.

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Build Setting Configuration” on page 19-21

• “C/C++ Code Generation” on page 19-5

• “Code Optimization” on page 19-63

Generate a C Executable at the Command Line
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then specify types for the function input parameters, specify the main
function, and generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

19-17

19 Generating C/C++ Code from MATLAB® Code

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h . If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h .

3 Configure your code generation parameters to include the main C function
and then generate the C executable:

cfg = coder.config('exe');
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg coderand

19-18

Generating Standalone C/C++ Executables from MATLAB® Code

codegen generates a C executable, coderand.exe, in the current folder. It
generates supporting files in the default folder, codegen/exe/coderand.
codegen generates the minimal set of #include statements for header files
required by the selected code replacement library.

Specifying main Functions for C/C++ Executables
When you generate an executable, you must provide a main function. If you
are generating a C executable, provide a C file, main.c. If you are generating
a C++ executable, provide a C++ file, main.cpp. Verify that the folder
containing the main function has only one main file. Otherwise, main.c takes
precedence over main.cpp, which causes an error when generating C++
code. You can specify the main file from the project settings dialog box, the
command line, or the Code Generation dialog box.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates an initialize function
and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB
file, you must include the initialize and terminate header functions in
main.c. Otherwise, do not include them in main.c.

• You must call these functions along with the C/C++ function. For more
information, see “Calling Initialize and Terminate Functions” on page 20-7.

Specify main Functions

Specifying main Functions in the Project Settings Dialog Box

1 On the project Build tab, click the More settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, set:

a Additional source files to the name of the C/C++ source file that
contains the main function. For example, main.c. For more information,
see “Specifying main Functions for C/C++ Executables” on page 19-19.

b Additional include directories to the location of main.c. For
example, c:\myfiles.

19-19

19 Generating C/C++ Code from MATLAB® Code

Specifying main Functions at the Command Line
Set the CustomSource and CustomInclude properties of the code generation
configuration object (see “Working with Configuration Objects” on page
19-30). The CustomInclude property indicates the location of C/C++ files
specified by CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');

2 Set the CustomSource property to the name of the C/C++ source file that
contains the main function. (For more information, see “Specifying main
Functions for C/C++ Executables” on page 19-19.) For example:

cfg.CustomSource = 'main.c';

3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';

4 Generate the C/C++ executable using the command line options. For
example, if myFunction takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

MATLAB Coder compiles and links the main function with the C/C++ code
that it generates from myMFunction.m.

19-20

Build Setting Configuration

Build Setting Configuration

In this section...

“Specify Output Type” on page 19-21

“Specify a Language for Code Generation” on page 19-24

“Specify Output File Name” on page 19-25

“Specify Output File Locations” on page 19-26

“Parameter Specification Methods” on page 19-27

“Specify Build Configuration Parameters” on page 19-28

Specify Output Type

Output Types
MATLAB Coder can generate code for the following output types:

• MEX function

• Instrumented MEX function

• Standalone C/C++ code and compile it to a static library

• Standalone C/C++ code and compile it to a dynamically-linked library

• Standalone C/C++ code and compile it to an executable

Note When you generate an executable, you must provide a C/C++ file
that contains the main function, as described in “Specifying main Functions
for C/C++ Executables” on page 19-19.

Location of Generated Files
By default, MATLAB Coder generates files in output folders based on your
output type. For more information, see “Generated Files and Locations” on
page 19-124.

19-21

19 Generating C/C++ Code from MATLAB® Code

Note Each time MATLAB Coder generates the same type of output for the
same code or project, it removes the files from the previous build. If you
want to preserve files from a build, copy them to a different location before
starting another build.

Specifying the Output Type Using the MATLAB Coder Project
Interface
On the MATLAB Coder project Build tab, set Output type to one of the
available output types:

• MEX Function (default)

• Instrumented MEX Function

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

MEX functions use a different set of configuration parameters than C/C++
libraries and executables. When you switch the output type between MEX
Function or Instrumented MEX Function and C/C++ Static Library,
C/C++ Dynamic Library or C/C++ Executable, verify these settings. For
more information, see “Changing Output Type” on page 16-42.

Specifying the Output Type at the Command Line
Call codegen with the -config option. For example, suppose you have a
primary function foo that takes no input parameters. The following table
shows how to specify different output types when compiling foo. If a primary
function has input parameters, you must specify these inputs. For more
information, see “Primary Function Input Specification” on page 19-38.

Note C is the default language for code generation with MATLAB Coder.
To generate C++ code, see “Specify a Language for Code Generation” on
page 19-24.

19-22

Build Setting Configuration

To Generate: Use This Command:

MEX function using the default
code generation options codegen foo

MEX function specifying code
generation options cfg = coder.config('mex');

% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to a library using the
default code generation options

codegen -config:lib foo

Standalone C/C++ code and
compile it to a library specifying
code generation options

cfg = coder.config('lib');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to an executable using
the default code generation
options and specifying the
main.c file at the command line

codegen -config:exe main.c foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 19-19

19-23

19 Generating C/C++ Code from MATLAB® Code

To Generate: Use This Command:

Standalone C/C++ code and
compile it to an executable
specifying code generation
options

cfg = coder.config('exe');
% Set configuration parameters, for example,
% specify main file
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 19-19

Specify a Language for Code Generation

• “Specifying a Language for Code Generation in the Project Settings Dialog
Box” on page 19-24

• “Specifying a Language for Code Generation at the Command Line” on
page 19-25

MATLAB Coder can generate C or C++ libraries and executables. C is the
default language. You can specify a language explicitly from the project
settings dialog box or at the command line.

Specifying a Language for Code Generation in the Project
Settings Dialog Box

1 Select a suitable compiler for your target language.

2 On the MATLAB Coder project Build tab, click the More settings link to
open the Project Settings dialog box.

3 On the All Settings tab, in the Advanced group, set Language to C or
C++.

19-24

Build Setting Configuration

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

Specifying a Language for Code Generation at the Command
Line

1 Select a suitable compiler for your target language.

2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

See Also.

• “Working with Configuration Objects” on page 19-30

• “Setting Up the C/C++ Compiler”

Specify Output File Name

Specifying Output File Name in a Project
On the project Build tab, in the Output File Name field, enter the file name.
The file name can include an existing path.

Note Do not put any spaces in the file name.

19-25

19 Generating C/C++ Code from MATLAB® Code

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

Command Line Alternative
Use the codegen function -o option.

Specify Output File Locations

Specifying Output File Location in a Project
The output file location should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

19-26

Build Setting Configuration

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– lib for static C/C++ libraries

– dll for dynamically-linked C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

Parameter Specification Methods

If you are using... Use... Details

A MATLAB Coder project The Project Settings dialog box “Specifying Build
Configuration Parameters
in the Project Settings Dialog
Box” on page 19-28

codegen at the command line
and want to specify a small
number of parameters

Configuration objects “Specifying Build
Configuration Parameters
at the Command Line Using
Configuration Objects” on

19-27

19 Generating C/C++ Code from MATLAB® Code

If you are using... Use... Details

codegen in build scripts page 19-29

codegen at the command line
and want to specify a large
number of parameters

Configuration object dialog
boxes

“Specifying Build
Configuration Parameters
at the Command Line Using
Dialog Boxes” on page 19-34

Specify Build Configuration Parameters

• “Specifying Build Configuration Parameters in the Project Settings Dialog
Box” on page 19-28

• “Specifying Build Configuration Parameters at the Command Line Using
Configuration Objects” on page 19-29

• “Specifying Build Configuration Parameters at the Command Line Using
Dialog Boxes” on page 19-34

You can specify build configuration parameters from the MATLAB Coder
project settings dialog box, the command line, or configuration object dialog
boxes.

Specifying Build Configuration Parameters in the Project
Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

The Project Settings dialog box opens. This dialog box provides the set of
configuration parameters applicable to the output type that you select.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function or Instrumented MEX Function and C/C++ Static
Library , C/C++ Dynamic Library or C/C++ Executable, verify these
settings. For more information, see “Changing Output Type” on page 16-42.

19-28

Build Setting Configuration

2 Modify the parameters as required. For more information about parameters
on a tab, click the Help button.

Changes to the parameter settings take place immediately.

3 After specifying the build parameters, you can generate code by clicking
the Build button on the same tab.

Specifying Build Configuration Parameters at the Command
Line Using Configuration Objects

Types of Configuration Objects. The codegen function uses configuration
objects to customize your environment for code generation. The following
table lists the available configuration objects.

Configuration Object Description

coder.CodeConfig If no Embedded Coder license is available or you
disable use of the Embedded Coder license, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.EmbeddedCodeConfig.

coder.HardwareImplementation Specifies parameters of the target hardware
implementation. If not specified, codegen generates
code that is compatible with the MATLAB host
computer.

For more information, see the class reference
information for coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference
information for coder.MexCodeConfig.

19-29

19 Generating C/C++ Code from MATLAB® Code

Working with Configuration Objects. To use configuration objects to
customize your environment for code generation:

1 In the MATLAB workspace, define configuration object variables, as
described in “Creating Configuration Objects” on page 19-31.

For example, to generate a configuration object for C static library
generation:

cfg = coder.config('lib');
% Returns a coder.CodeConfig object if no
% Embedded Coder license available.
% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of
these methods:

• Interactive commands, as described in “Specifying Build Configuration
Parameters at the Command Line Using Configuration Objects” on
page 19-29

• Dialog boxes, as described in “Specifying Build Configuration Parameters
at the Command Line Using Dialog Boxes” on page 19-34

3 Call the codegen function with the -config option. Specify the
configuration object as its argument.

The -config option instructs codegen to generate code for the target,
based on the configuration property values. In the following example,
codegen generates a C static library from a MATLAB function, foo, based
on the parameters of a code generation configuration object, cfg, defined
in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in
this case, a C static library. For more information, see codegen.

19-30

Build Setting Configuration

Creating Configuration Objects. You can define a configuration object
in the MATLAB workspace.

To Create... Use a Command Such As...

MEX configuration object

coder.MexCodeConfig

cfg = coder.config('mex');

Code generation configuration
object for generating a standalone
C/C++ library or executable

coder.CodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable check out of an
Embedded Coder license, use one of the following commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

19-31

19 Generating C/C++ Code from MATLAB® Code

To Create... Use a Command Such As...

Code generation configuration
object for generating a standalone
C/C++ library or executable for an
embedded target

coder.EmbeddedCodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note Requires an Embedded Coder license; otherwise
creates a coder.CodeConfig object.

Hardware implementation
configuration object

coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

Each configuration object comes with a set of parameters, initialized to
default values. You can change these settings, as described in “Modifying
Configuration Objects at the Command Line Using Dot Notation” on page
19-32.

Modifying Configuration Objects at the Command Line Using Dot
Notation. You can use dot notation to modify the value of one configuration
object parameter at a time. Use this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object
properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');
cfg.CustomInclude = 'c:\myfiles';
cfg.CustomSource = 'main.c';
codegen -config cfg foo

19-32

Build Setting Configuration

• To automatically generate and launch code generation reports after
generating a C/C++ static library:

cfg = coder.config('lib');
cfg.GenerateReport= true;
cfg.LaunchReport = true;
codegen -config cfg foo

Saving Configuration Objects. Configuration objects do not automatically
persist between MATLAB sessions. Use one of the following methods to
preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file
at your next session

For example, assume you create and customize a MEX configuration object
mexcfg in the MATLAB workspace. To save the configuration object, at the
MATLAB prompt, enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB
workspace.

Write a script that creates the configuration object and sets its
properties.

You can rerun the script whenever you need to use the configuration object
again.

19-33

19 Generating C/C++ Code from MATLAB® Code

Specifying Build Configuration Parameters at the Command
Line Using Dialog Boxes

1 Create a configuration object as described in “Creating Configuration
Objects” on page 19-31.

For example, to create a coder.MexCodeConfig configuration object for
MEX code generation:

mexcfg = coder.config('mex');

2 Open the property dialog box using one of these methods:

• In the MATLAB workspace, double-click the configuration object
variable.

• At the MATLAB prompt, issue the open command, passing it the
configuration object variable, as in this example:

open mexcfg

3 In the dialog box, modify configuration parameters as required, then click
Apply.

4 Call the codegen function with the -config option. Specify the
configuration object as its argument:

codegen -config mexcfg foo

The -config option specifies the type of output that you want to build.
For more information, see codegen.

19-34

Share Build Configuration Settings

Share Build Configuration Settings
To share build configuration settings between multiple projects or between
the project and command-line workflow, use the project Export settings
and Import settings options.

Export Settings
To export the current project settings to a code generation configuration object
stored in the base workspace:

1 In the top right corner of the project, click the Actions icon () and select
Export settings.

2 In the Export Project Settings dialog box, specify a name for the
configuration object.

MATLAB Coder saves the project settings information in a configuration
object with the specified name in the base workspace.

Project Output Type Configuration Object

MEX Function

Instrumented MEX Function

coder.MexCodeConfig

19-35

19 Generating C/C++ Code from MATLAB® Code

Project Output Type Configuration Object

C/C++ Static Library

C/C++ Dynamic Library

C/C++ Executable

Without an Embedded Coder
license:coder.CodeConfig
With an Embedded Coder
license:coder.EmbeddedCodeConfig

You can then either import these settings into another project or use it with
the codegen function -config option to generate code at the command line.

Import Settings
To import the settings saved in a code generation configuration object stored
in the base workspace:

1 In the top right corner of the project, click the Actions icon () and select
Import settings.

2 In the Import Project Settings dialog box, select the configuration object
that you want to use.

MATLAB Coder imports the settings saved in the configuration object and
uses them as the current project settings.

Note When you import a coder.MexCodeConfig object, if the project
output type is not already set to Instrumented MEX Function, the output
type is set to MEX Function.

19-36

Share Build Configuration Settings

See Also

• “Build Setting Configuration” on page 19-21

• coder.config

19-37

19 Generating C/C++ Code from MATLAB® Code

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 19-38

“Properties to Specify” on page 19-38

“Rules for Specifying Properties of Primary Inputs” on page 19-42

“Methods for Defining Properties of Primary Inputs” on page 19-42

“Define Input Properties by Example at the Command Line” on page 19-43

“Specify Constant Inputs at the Command Line” on page 19-46

“Specify Variable-Size Inputs at the Command Line” on page 19-48

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at compile time.
To infer variable properties in MATLAB files, MATLAB Coder must be able
to identify the properties of the inputs to the primary function, also known
as the top-level or entry-point function. Therefore, if your primary function
has inputs, you must specify the properties of these inputs, to MATLAB
Coder. If your primary function has no input parameters, MATLAB Coder
can compile your MATLAB file without modification. You do not need to
specify properties of inputs to local functions or external functions called by
the primary function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the
generated code, specify the type. Otherwise, the inputs default to real,
scalar doubles.

• When generating code with codegen, you must specify the type of these
inputs using the -args option.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

19-38

Primary Function Input Specification

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for all fields of a
primary structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

All other
inputs

Default Property Values
MATLAB Coder assigns the following default values for properties of primary
function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

19-39

19 Generating C/C++ Code from MATLAB® Code

Specifying Default Values for Structure Fields. In most cases, when you
don’t explicitly specify values for properties, MATLAB Coder uses defaults
except for structure fields. The only way to name a field in a structure is to
set at least one of its properties. Therefore, you might need to specify default
values for properties of structure fields. For examples, see “Specifying Class
and Size of Scalar Structure” on page 19-59 and “Specifying Class and Size
of Structure Array” on page 19-60.

Specifying Default fimath Values for MEX Functions. MEX functions
generated with MATLAB Coder use the default fimath value in effect at
compile time. If you do not specify a default fimath value, MATLAB Coder
uses the MATLAB default fimath. The MATLAB factory default has the
following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules”.

When running MEX functions that depend on the default fimath value, do
not change this value during your MATLAB session. Otherwise, you receive
a run-time warning, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test relies on the default fimath object in effect at compile
time. At the MATLAB prompt, generate the MEX function text_mex to use
the factory setting of the MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

19-40

Primary Function Input Specification

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default
setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes
The following table presents the class names supported by MATLAB Coder.

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

19-41

19 Generating C/C++ Code from MATLAB® Code

Class Name Description

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

“Specifying Properties
of Primary Function
Inputs in a Project”
on page 16-7

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB
code

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

19-42

Primary Function Input Specification

Method Advantages Disadvantages

• MATLAB Coder saves the
definitions in the project file

“Define Input
Properties by
Example at the
Command Line” on
page 19-43

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use

• Does not alter original MATLAB
code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties
Programmatically
in the MATLAB File”
on page 19-50

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• MATLAB Coder project
files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

Define Input Properties by Example at the Command
Line

• “Command Line Option -args” on page 19-44

• “Rules for Using the -args Option” on page 19-44

19-43

19 Generating C/C++ Code from MATLAB® Code

• “Specifying Properties of Primary Inputs by Example at the Command
Line” on page 19-45

• “Specifying Properties of Primary Fixed-Point Inputs by Example at the
Command Line” on page 19-45

Command Line Option -args
The codegen function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with codegen. If you
have a test function or script that calls the entry-point MATLAB function with
the required types, you can use coder.getArgTypes to determine the types of
the function inputs. coder.getArgTypes returns a cell array of coder.Type
objects that you can pass to codegen using the -args option. For more
information, see the coder.getArgTypes function reference information.

See “Specifying General Properties of Primary Inputs” on page 19-58 for
codegen.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

Note If you specify an empty cell array with the -args option, codegen
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

19-44

Primary Function Input Specification

Specifying Properties of Primary Inputs by Example at the
Command Line
Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by
Example at the Command Line
To generate a MEX function or C/C++ code for fixed-point MATLAB code, you
must install Fixed-Point Toolbox software.

Consider a MATLAB function that calculates the square root of a fixed-point
number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

19-45

19 Generating C/C++ Code from MATLAB® Code

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...
'FractionLength',23,...
'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,...
'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,...
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the codegen command, passing the
variable myeg as the argument to the -args option, as in this example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
In cases where you know your primary inputs will not change at run time,
it is more efficient to specify them as constant values than as variables to
eliminate unnecessary overhead in generated code. Common uses of constant
inputs are for flags that control how an algorithm executes and values that
specify the sizes or types of data.

You can define inputs to be constants using the -args command-line option
with a coder.Constant object, as in this example:

-args {coder.Constant(constant_input)}

19-46

Primary Function Input Specification

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs
codegen compiles constant function inputs into the generated code. As
a result, the MEX function signature differs from the MATLAB function
signature. At run time you supply the constant argument to the MATLAB
function, but not to the MEX function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, at the
MATLAB prompt, type the following command:

codegen identity -args {coder.Constant(42)}

To run the MATLAB function, supply the constant argument:

identity(42)

You get the following result:

ans =

42

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input
Suppose you define a structure tmp in the MATLAB workspace to specify
the dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

19-47

19 Generating C/C++ Code from MATLAB® Code

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —
and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

19-48

Primary Function Input Specification

For more information, see coder.typeof and “Generate Code for
Variable-Size Data” on page 19-98.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector
A and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

B = zeros(1,0);
error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension
stays fixed in size and its second dimension can grow to an upper bound of
100. Specify the second input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

19-49

19 Generating C/C++ Code from MATLAB® Code

Define Input Properties Programmatically in the MATLAB
File

With MATLAB Coder, you use the MATLAB assert function to define
properties of primary function inputs directly in your MATLAB file.

In this section...

“How to Use assert with MATLAB® Coder™” on page 19-50

“Rules for Using assert Function” on page 19-57

“Specifying General Properties of Primary Inputs” on page 19-58

“Specifying Properties of Primary Fixed-Point Inputs” on page 19-59

“Specifying Class and Size of Scalar Structure” on page 19-59

“Specifying Class and Size of Structure Array” on page 19-60

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties
using the assert function. Use the exact syntax that is provided; do not
modify it.

• “Specify Any Class” on page 19-51

• “Specify fi Class” on page 19-51

• “Specify Structure Class” on page 19-52

• “Specify Fixed Size” on page 19-52

• “Specify Scalar Size” on page 19-53

• “Specify Upper Bounds for Variable-Size Inputs” on page 19-53

• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 19-53

• “Specify Size of Individual Dimensions” on page 19-54

• “Specify Real Input” on page 19-55

19-50

Define Input Properties Programmatically in the MATLAB® File

• “Specify Complex Input” on page 19-55

• “Specify numerictype of Fixed-Point Input” on page 19-55

• “Specify fimath of Fixed-Point Input” on page 19-56

• “Specify Multiple Properties of Input” on page 19-56

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 19-55.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 19-56. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

19-51

19 Generating C/C++ Code from MATLAB® Code

...
assert(isa(U,'embedded.fi'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 19-55.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 19-56. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Structure Class

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

19-52

Define Input Properties Programmatically in the MATLAB® File

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input
U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set
the upper-bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using
coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));

19-53

19 Generating C/C++ Code from MATLAB® Code

assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second
dimension as variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.

• The last dimension specification takes precedence over earlier
specifications.

Sets the upper-bound size of dimension k of input parameter param. To set
the upper-bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

19-54

Define Input Properties Programmatically in the MATLAB® File

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is
real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U
is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.

19-55

19 Generating C/C++ Code from MATLAB® Code

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the
MATLAB default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&

~isreal(U) &&

19-56

Define Input Properties Programmatically in the MATLAB® File

all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

Rules for Using assert Function
When using the assert function to specify the properties of primary function
inputs, follow these rules:

• Call assert functions at the beginning of the primary function, before any
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties
of primary function inputs before converting your MATLAB code to C/C++
code.

• If you set the class of an input parameter to fi, you must also set its
numerictype. See “Specify numerictype of Fixed-Point Input” on page
19-55. You can also set its fimath properties. See “Specify fimath of
Fixed-Point Input” on page 19-56. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order that they appear in the
structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

- You must also specify an upper-bound size for each dimension of the
input parameter.

- For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

- To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

- Bounds must be non-negative.

• If you specify individual dimensions, the following rules apply:

- You must specify the size of each dimension at least once.

19-57

19 Generating C/C++ Code from MATLAB® Code

- The last dimension specification takes precedence over earlier
specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)

class double

size 1024-by-1 vector

win

complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

19-58

Define Input Properties Programmatically in the MATLAB® File

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

In the following example, the primary MATLAB function mcsqrtfi takes one
fixed-point input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your MATLAB function:

%#codegen

19-59

19 Generating C/C++ Code from MATLAB® Code

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you don’t explicitly specify values for properties,
MATLAB Coder uses defaults — except for structure fields. The only way
to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of a structure field

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its
properties. As a minimum, you must specify the class of all fields.

19-60

Speed Up Compilation

Speed Up Compilation

In this section...

“Generate Code Only” on page 19-61

“Disable Compiler Optimization” on page 19-61

Generate Code Only
If you select this option, MATLAB Coder does not invoke the make command
or generate compiled object code. When you want to iterate rapidly between
modifying MATLAB code and generating C/C++ code and you want to inspect
the generated code, this option saves you time during the development cycle .

In the Project Interface
On the project Build tab, select Generate code only.

At the Command Line
Use the codegen -c option to only generate code without invoking the make
command. For example, to generate code only for a function, foo, that takes
one single, scalar input:

codegen -c foo -args {single(0)}

For more information and a complete list of compilation options, see codegen.

Disable Compiler Optimization
Turning compiler optimizations off shortens compile time, but increases run
time.

In the Project Interface

1 On the MATLAB Coder project Build tab, verify that the Output type is
C/C++ Static Library, C/C++ Dynamic Library or C/C++ Executable.

2 On the Build tab, click the More settings link.

19-61

19 Generating C/C++ Code from MATLAB® Code

3 In the Project Settings dialog box All Settings tab, under Advanced,
set Compiler optimization level to Off.

At the Command Line

1 Create a code generation configuration object for C/C++ library or
executable. For example, for a static library:

cfg = coder.config('lib');

2 Set the CCompilerOptimization to Off.

cfg.CCompilerOptimization='Off';

19-62

Code Optimization

Code Optimization

In this section...

“Unroll for-loops” on page 19-63

“Inline Code” on page 19-65

“Eliminate Redundant Copies of Function Inputs (A=foo(A))” on page 19-66

“Rewrite Logical Array Indexing as a Loop” on page 19-68

Unroll for-loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant. By unrolling short loops with
known bounds at compile time, MATLAB generates highly optimized code
with no branches.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limiting Copying the Body of a for-loop in Generated Code
To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)

19-63

19 Generating C/C++ Code from MATLAB® Code

% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins
for i = coder.unroll(1:2:n, dounroll)

if (i > 2) && (i < n-2)
y(i) = rand();

end;
end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static
library code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void m_getrand(real_T y[8])
{

int32_T i0;
for(i0 = 0; i0 < 8; i0++) {

y[i0] = 0.0;
}
/* Loop body begins */
y[2] = m_rand();
y[4] = m_rand();
/* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

19-64

Code Optimization

static void m_b_getrand(real_T y[50])
{

int32_T i;
for(i = 0; i < 50; i++) {

y[i] = 0.0;
}
/* Loop body begins */
for(i = 0; i < 50; i += 2) {

if((i + 1 > 2) && (i + 1 < 48)) {
y[i] = m_rand();

}
}
/* Loop body ends */

}

Inline Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

Preventing Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

Using Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

19-65

19 Generating C/C++ Code from MATLAB® Code

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.

coder.inline('never');
end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Eliminate Redundant Copies of Function Inputs
(A=foo(A))
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by
reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}

19-66

Code Optimization

...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)
{

return A * B;
}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen
x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place

19-67

19 Generating C/C++ Code from MATLAB® Code

y2=[x2,x2];
end

You can modify this code to eliminate redundant copies. The changes are
highlighted in bold.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

Rewrite Logical Array Indexing as a Loop
Rewriting logical array indexing as a loop can optimize the generated C/C++
code for both speed and readability. For example, the MATLAB function, foo,
uses logical array indexing.

function x = foo(x,N) %#codegen
assert(all(size(x) == [1 100]))
x(x>N) = N;

The generated C code for this function is not very efficient. Rewrite the
MATLAB code to use a loop instead of logical indexing:

function x = foo_rewrite(x,N) %#codegen
assert(all(size(x) == [1 100]))
for ii=1:numel(x)

if x(ii) > N
x(ii) = N;

end
end

19-68

Paths and File Infrastructure Setup

Paths and File Infrastructure Setup

In this section...

“Compile Path Search Order” on page 19-69

“Specifying Folders to Search for Custom Code” on page 19-69

“Naming Conventions” on page 19-70

Compile Path Search Order
MATLAB Coder resolves MATLAB functions by searching first on the code
generation path and then on the MATLAB path. The code generation path
contains the current folder and the code generation libraries. By default,
unless MATLAB Coder determines that a function should be extrinsic or you
explicitly declare the function to be extrinsic, MATLAB Coder tries to compile
and generate code for functions it finds on the path. MATLAB Coder does
not compile extrinsic functions, but rather dispatches them to the MATLAB
interpreter for execution. See “Resolution of Function Calls in MATLAB
Generated Code” on page 13-2.

Specifying Folders to Search for Custom Code
If you want to integrate custom code — such as source, header, and library
files — with the generated code, you can specify additional folder to search.
The following table describes how to specify these search paths. The path
should not contain spaces, as this can lead to code generation failures in
certain operating system configurations. If the path contains non 7-bit ASCII
characters, such as Japanese characters, MATLAB Coder might not be able to
find files on this path.

19-69

19 Generating C/C++ Code from MATLAB® Code

To specify
additional folders:

Do this:

Using the MATLAB
Coder interface

On the MATLAB Coder project Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the
Paths tab.

3 For the Search paths field, either browse to add
a folder to the search path or enter the full path.
The search path must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions
MATLAB Coder enforces naming conventions for MATLAB functions and
generated files.

• “Reserved Prefixes” on page 19-70

• “Reserved Keywords” on page 19-70

• “Conventions for Naming Generated files” on page 19-74

Reserved Prefixes
MATLAB Coder reserves the prefix eml for global C/C++ functions and
variables in generated code. For example, MATLAB for code generation
run-time library function names all begin with the prefix emlrt, such as
emlrtCallMATLAB. To avoid naming conflicts, do not name C/C++ functions or
primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 19-71

• “C++ Reserved Keywords” on page 19-71

• “Reserved Keywords for Code Generation” on page 19-72

19-70

Paths and File Infrastructure Setup

• “MATLAB® Coder™ Code Replacement Library Keywords” on page 19-72

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not be
used in MATLAB code as identifiers or function names. If your MATLAB code
contains any reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 19-71.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

19-71

19 Generating C/C++ Code from MATLAB® Code

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

MATLAB Coder Code Replacement Library Keywords. The list of
code replacement library (CRL) reserved keywords for your development
environment varies depending on which CRLs currently are registered.
Beyond the default ANSI®, ISO®, and GNU® CRLs provided with MATLAB
Coder software, additional CRLs might be registered and available for use if
you have installed other products that provide CRLs (for example, a target
product), or if you have used Embedded Coder APIs to create and register
custom CRLs.

19-72

Paths and File Infrastructure Setup

To generate a list of reserved keywords for all CRLs currently registered in
your environment, use the following MATLAB function:

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns an array of CRL keyword strings. Specifying the return
argument is optional.

Note To list the CRLs currently registered in your environment, use the
MATLAB command RTW.viewTfl.

To generate a list of reserved keywords for the CRL that you are using to
generate code, call the function passing the name of the CRL as displayed in
the Code replacement librarymenu on the Code Generation > Interface
pane of the Configuration Parameters dialog box. For example,

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:

>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

'exp10'

'exp10f'

'acosf'

'acoshf'

'asinf'

'asinhf'

'atanf'

'atanhf'

...

'rt_lu_cplx'

'rt_lu_cplx_sgl'

'rt_lu_real'

'rt_lu_real_sgl'

'rt_mod_boolean'

'rt_rem_boolean'

19-73

19 Generating C/C++ Code from MATLAB® Code

'strcpy'

'utAssert'

Note Some of the returned keyword strings appear with the suffix
$N, for example, 'rt_atan2$N'. $N expands into the suffix _snf only if
nonfinite numbers are supported. For example, 'rt_atan2$N' represents
'rt_atan2_snf' if nonfinite numbers are supported and 'rt_atan2' if
nonfinite numbers are not supported. As a precaution, you should treat both
forms of the keyword as reserved.

Conventions for Naming Generated files
The following table describes how MATLAB Coder names generated files.
MATLAB Coder follows MATLAB conventions by providing platform-specific
extensions for MEX files.

Platform MEX File
Extension

MATLAB
Coder Library
Extension

MATLAB Coder
Executable
Extension

Linus Torvalds’
Linux (32-bit)

.mexglx .a None

Linux x86-64 .mexa64 .a None

Microsoft
Windows (32-bit)

.mexw32 .lib .exe

Windows x64 .mexw64 .lib .exe

19-74

Generate Code for Multiple Entry-Point Functions

Generate Code for Multiple Entry-Point Functions

In this section...

“Advantages of Generating Code for More Than One Entry-Point Function”
on page 19-75

“Generating Code for More Than One Entry-Point Function Using the
Project Interface” on page 19-75

“Generating Code for More Than One Entry-Point Function at the
Command Line” on page 19-78

“How to Call an Entry-Point Function in a MEX Function” on page 19-79

“How to Call an Entry-Point Function in a C/C++ Library Function from
C/C++ Code” on page 19-80

Advantages of Generating Code for More Than One
Entry-Point Function
Generating a single C/C++ library for more than one entry-point MATLAB
function allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to
integrate with larger C/C++ applications.

• Share code efficiently between library functions.

• Communicate between library functions using shared memory.

Generating a MEX function for more than one entry-point function allows
you to validate entry-point interactions in MATLAB before creating a C/C++
library.

Generating Code for More Than One Entry-Point
Function Using the Project Interface
In the project, in the Entry-Point Files pane on the Overview tab, click the
Add files link. Browse to the file that you want to add. Repeat this action
for each entry-point file.

19-75

19 Generating C/C++ Code from MATLAB® Code

By default, MATLAB Coder:

• Lists the entry-point files alphabetically.

• Generates a MEX function in the current folder. MATLAB Coder names
the MEX function , fun_1_mex. fun_1 is the name of the first entry-point
function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

Generating a MEX Function with Two Entry-Point Functions Using
the Project Interface

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector.

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

3 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the
file ep1.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the input is undefined.

c Define the type of input u.

19-76

Generate Code for Multiple Entry-Point Functions

i On the Overview tab, click the field to the right of the input
parameter u and then, from the list of input options, select single.

ii From the list of size options, select 1 x 1 to specify that u is a scalar.

d On the project Overview tab, click the Add files link. Browse to the
file ep2.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the inputs are undefined.

e Define the type of input u.

iii On the Overview tab, click the field to the right of the input
parameter u and then, from the list of input options, select double.

iv From the list of size options, select 1 x 1 to specify that u is a scalar.

f Repeat the previous step for input v, setting the Size to 2x1.

4 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file name
is ep1_mex.

5 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, ep1_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mex/ep1_mex.
MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files and creates a platform-specific extension for the
MEX file, as described in “Naming Conventions” on page 19-70.

You can now test your MEX function in MATLAB. For more information,
see “How to Call an Entry-Point Function in a MEX Function” on page
19-79.

Generating a C Static Library with Two Entry-Point Functions Using
the Project Interface

You can generate a C static library with two entry-point functions, ep1 and
ep2, following the same project setup steps that you use to generate a MEX
function. (See Generating a MEX Function with Two Entry-Point Functions

19-77

19 Generating C/C++ Code from MATLAB® Code

Using the Project Interface on page 19-76.) When you build the project, set
the Output type to C/C++ Static Library.

MATLAB Coder builds the project and generates a C library, ep1, and
supporting files in the default folder, codegen/lib/ep1.

You can now test your library. For more information, see “How to Call an
Entry-Point Function in a C/C++ Library Function from C/C++ Code” on
page 19-80.

Generating Code for More Than One Entry-Point
Function at the Command Line
To generate code for more than one entry-point function, use the following
syntax, where global_options applies to all functions, fun_1 through fun_n,
and options_n applies only to the preceding function fun_n.

codegen -global_options fun_1 -options_1 ... fun_n -options_n

By default, codegen:

• Generates a MEX function in the current folder. codegen names the MEX
function , fun_1_mex. fun_1 is the name of the first entry-point function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

If you specify an output file name, out_fun, using the -o option, codegen
stores the generated files in the subfolder codegen/mex/out_fun/. For more
information on setting build options at the command line, see codegen.

Generating a MEX Function with Two Entry-Point Functions at the
Command Line

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector. Using the -o option, name the generated
MEX function sharedmex.

codegen -o sharedmex ep1 -args single(0) ep2 -args { 0, zeros(1,1024) }

19-78

Generate Code for Multiple Entry-Point Functions

codegen generates a MEX function named sharedmex in the current folder
and stores generated files in the subfolder codegen/mex/sharedmex.

Note By default, codegen generates a MEX function named ep1_mex in the
subfolder, codegen/mex/ep1.

Generating a C/C++ Static Library with Two Entry-Point Functions at
the Command Line

Generate standalone C/C++ code and compile it to a library for two entry-point
functions, ep1 and ep2. Function ep1 takes one input, a single scalar, and ep2
takes two inputs, a double scalar and a double vector. Use the -config:lib
option to specify that the target is a library. Using the -o option, name the
generated library function sharedlib.

codegen -config:lib -o sharedlib ep1 -args single(0) ep2 ...
-args { 0, zeros(1,1024) }

codegen generates C/C++ library code in the codegen\lib\sharedlib folder.

Note By default, codegen generates a library function named ep1 in the
subfolder, codegen/lib/ep1.

For information on viewing entry-point functions in the code generation
report, see “Code Generation Reports” on page 19-174.

How to Call an Entry-Point Function in a MEX Function
To call an entry-point function in a MEX function that has more than one
entry point, use this syntax:

MEX_Function('entry_point_function_name',
... entry_point_function_param1,
... , entry_point_function_paramn)

19-79

19 Generating C/C++ Code from MATLAB® Code

Calling an Entry-Point Function in a MEX Function

Consider a MEX function, sharedmex, that has entry-point functions ep1 and
ep2. Entry-point function ep1 takes one single scalar input and ep2 takes two
inputs, a double scalar and a double vector.

To call ep1 with an input parameter u, enter:

sharedmex('ep1', u)

To call ep2 with input parameters u and v, enter:

sharedmex('ep2', u, v)

How to Call an Entry-Point Function in a C/C++
Library Function from C/C++ Code
To call an entry-point function in a C/C++ library function from C/C++ code,
write a main function in C/C++ that:

• Includes the generated header files, which contain the function prototypes
for the entry-point functions.

• Calls the initialize function before calling the entry-point functions for
the first time.

• Calls the terminate function after calling the entry-point functions for
the last time.

• Configures your target to integrate this custom C/C++ main function with
your generated code, as described in “Custom C/C++ Code Integration” on
page 20-12.

• Generates the C/C++ executable using codegen.

See the example, “Call a C Static Library Function from C Code” on page 20-2.

19-80

Generate Code for Global Data

Generate Code for Global Data

In this section...

“Workflow” on page 19-81

“Declare Global Variables” on page 19-81

“Define Global Data” on page 19-82

“Synchronizing Global Data with MATLAB” on page 19-83

“Limitations of Using Global Data” on page 19-87

Workflow
To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 19-82.

3 Generate code from the MATLAB Coder project interface or using codegen.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 19-83.

Declare Global Variables
When using global data, you must first declare the global variables in your
MATLAB code. Consider the use_globals function that uses two global
variables AR and B:

function y = use_globals(u)
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;

19-81

19 Generating C/C++ Code from MATLAB® Code

global B;
AR(1) = u + B(1);
y = AR * 2;

Define Global Data
You can define global data either in the MATLAB global workspace, in a
MATLAB Coder project, or at the command line. If you do not initialize
global data in a project or at the command line, MATLAB Coder looks for the
variable in the MATLAB global workspace. If the variable does not exist,
MATLAB Coder generates an error.

Defining Global Data in the MATLAB Global Workspace
To generate a MEX function for the use_globals function described in
“Declare Global Variables” on page 19-81 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the
MATLAB prompt, enter:

global AR B;
AR = ones(4);
B=[1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}
% Use the -args option to specify that the input u
% is a real, scalar, double
% By default, codegen generates a MEX function,
% use_globals_mex, in the current folder

Defining Global Data in a MATLAB Coder Project

1 On the project Overview tab, click Add global and enter a name for the
global variable.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

19-82

Generate Code for Global Data

2 After adding a global variable, before building the project, specify its type
and initial value. For more information, see “Specifying Global Variable
Type and Initial Value in a Project” on page 16-33.

Note If you do not specify the type, you must create a variable with the
same name in the global workspace.

Defining Global Data at the Command Line
To define global data at the command line, use the codegen -globals option.
For example, to compile the use_globals function described in “Declare
Global Variables” on page 19-81, specify two global inputs AR and B at the
command line. Use the -args option to specify that the input u is a real, scalar
double. By default, codegen generates a MEX function, use_globals_mex,
in the current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

Defining Variable-Size Global Data. To provide initial values for
variable-size global data, specify the type and initial value with the -globals
flag using the format -globals {'g', {type, initial_value}}. For
example, to specify a global variable g1 that has an initial value [1 1] and
upper bound [2 2], enter:

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated MEX function and MATLAB each have their own copies of
global data. To make these copies consistent, you must synchronize their
global data whenever the two interact. If you do not synchronize the data,

19-83

19 Generating C/C++ Code from MATLAB® Code

their global variables might differ. The level of interaction determines when
to synchronize global data. For more information, see “When to Synchronize
Global Data” on page 19-84.

When to Synchronize Global Data
By default, synchronization between the MEX function’s global data and
MATLAB occurs at MEX function entry and exit and for all extrinsic calls.
Use this synchronization method for maximum consistency between the MEX
function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 19-85.

19-84

Generate Code for Global Data

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Have maximum consistency
when all extrinsic calls
modify global data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Have maximum consistency
when most extrinsic calls
modify global data, but a
few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls that
do not affect global data.

Have maximum consistency
when most extrinsic calls
do not modify global data,
but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data.

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated MEX functions
only. No interaction
between MATLAB and
MEX function global data.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 19-84.

19-85

19 Generating C/C++ Code from MATLAB® Code

You can control the global data synchronization mode from the project
settings dialog box, the command line, or a MEX configuration dialog box.
You control the synchronization of data with extrinsic functions using the
coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode in the Project
Settings Dialog Box.

1 On the MATLAB Coder project Build tab, verify that Output type is set
to MEX Function and then click the More settings link.

2 On the Project Settings dialog box Memory tab, set Global data
synchronization mode to At MEX-function entry and exit or
Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 In the MATLAB workspace, define the code generation configuration object.
At the MATLAB command line, enter:

mexcfg = coder.config('mex');

2 At the MATLAB command line, set the GlobalDataSyncMethod property to
SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 When compiling your code, use the mexcfg configuration object. For
example, to generate a MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls. To control
whether synchronization between MATLAB and MEX function global
data occurs before and after you call an extrinsic function, use the
coder.extrinsic-sync:on and -sync:off options.

By default, global data is:

19-86

Generate Code for Global Data

• Synchronized before and after each extrinsic call, if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not affect global data,
turn off synchronization for these calls using the -sync:off option. For
example, if functions foo1 and foo2 do not affect global data, turn off
synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls
that affect global data, turn on synchronization for these calls using the
-sync:on option. For example, if functions foo1 and foo2 do affect global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot control the synchronization
for specific extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data
You cannot use global data with the coder.cstructname function.

19-87

19 Generating C/C++ Code from MATLAB® Code

Generation of Traceable Code

In this section...

“About Code Traceability” on page 19-88

“Generate Traceable Code” on page 19-89

“Format of Traceability Tags” on page 19-91

“Location of Comments in Generated Code” on page 19-91

“Traceability Limitations” on page 19-96

About Code Traceability
You can configure MATLAB Coder to generate C code and MEX functions that
include the MATLAB source code as comments. Including this information in
the generated code enables you to:

• Correlate the generated code with your source code.

• Understand how the generated code implements your algorithm.

• Evaluate the quality of the generated code.

In these automatically generated comments, a traceability tag immediately
precedes each line of source code. This traceability tag provides details
about the location of the source code. For more information, see “Format
of Traceability Tags” on page 19-91.

For Embedded Coder projects, (requires an Embedded Coder license), you can
also generate C/C++ code that includes the MATLAB function help text. The
function help text is the first comment after the MATLAB function signature.
It is displayed in the function banner of the generated code. The function help
text provides information about the capabilities of the function and how to
use it. For more information, see “Tracing Between Generated C Code and
MATLAB Code”.

19-88

Generation of Traceable Code

Generate Traceable Code
To generate more traceable code, include MATLAB source code as comments
in the generated code from the Project Settings dialog box, the command
line, or a MEX configuration dialog box.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function and C/C++ Static Library, C/C++ Dynamic Library
or C/C++ Executable, verify these settings. For more information, see
“Changing Output Type” on page 16-42.

3 In the Project Settings dialog box, click the Comments tab.

4 On the Code Appearance tab, select MATLAB source code as
comments and then close the dialog box.

At the Command Line

For MEX Targets. Use the MATLABSourceComments option of the MEX
configuration object. For example, to compile the file foo.m and include the
source code as comments in the generated MEX function:

1 In the MATLAB workspace, define the MEX configuration object by issuing
a constructor command:

mexcfg = coder.config('mex');

2 From the command line, enable the MATLABSourceComments:

mexcfg.MATLABSourceComments = true;

19-89

19 Generating C/C++ Code from MATLAB® Code

3 Using the -config option, pass the configuration object to codegen. For
example, to generate a MEX function for a function foo that has no input
parameters:

codegen -config mexcfg foo

For C/C++ Libraries. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C static
library:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a static library:

cfg = coder.config('lib');
% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen.
For example, to generate a library for a function foo that has no input
parameters:

codegen -config cfg foo

For Embedded Coder projects (requires an Embedded Coder license), you can
also include the function help text in the generated code function banner
using the MATLABFcnDesc option. For more information, see “Tracing Between
Generated C Code and MATLAB Code”.

For C/C++ Executables. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C executable:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a library:

cfg = coder.config('exe');

19-90

Generation of Traceable Code

% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen. For
example, to generate an executable for a function foo that has no input
parameters:

codegen -config cfg main.c foo
% You must specify a main file when generating an executable

For Embedded Coder projects, (requires an Embedded Coder license), you can
also include the function help text in the function banner of the generated
code using the MATLABFcnDesc option. For more information, see “Tracing
Between Generated C Code and MATLAB Code”.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the
MATLAB source code in the comment. The format of the tag is:
<filename>:<line number>.

For example, the comment indicates that the code x = r * cos(theta);
appears at line 4 in the source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Note With an Embedded Coder license, the traceability tags in the code
generation report are hyperlinks to the MATLAB source code. For more
information, see “Tracing Between Generated C Code and MATLAB Code”.

Location of Comments in Generated Code
The auto-generated comments containing the source code and traceability tag
appear in the generated code as follows.

19-91

19 Generating C/C++ Code from MATLAB® Code

Straight-Line Source Code
In straight-line source code without any if, while, for or switch statements,
the comment containing the source code precedes the generated code that
implements the source code statement. This comment appears after any user
comment that precedes the generated code.

For example, in the following code, the user comment, /* Convert polar
to Cartesian */, appears before the automatically generated comment
containing the first line of source code, together with its traceability tag,
/* 'straightline:4' x = r * cos(theta); */.

MATLAB Code.

function [x y] = straightline(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Commented C Code.

void straightline(real_T r, real_T theta, ...
real_T *x, real_T *y)

{
/* Convert polar to Cartesian */
/* 'straightline:4' x = r * cos(theta); */
*x = r * muDoubleScalarCos(theta);
/* 'straightline:5' y = r * sin(theta); */
*y = r * muDoubleScalarSin(theta);

}

If Statements
The comment for the if statement immediately precedes the code that
implements the statement. This comment appears after any user comment
that precedes the generated code. The comments for the elseif and else
clauses appear immediately after the code that implements the clause, and
before the code generated for statements in the clause.

19-92

Generation of Traceable Code

MATLAB Code.

function y = ifstmt(u,v)
%#codegen
if u > v

y = v + 10;
elseif u == v

y = u * 2;
else

y = v - 10;
end

Commented C Code.

real_T ifstmt(real_T u, real_T v)
{

/* 'ifstmt:3' if u > v */
if(u > v) {

/* 'ifstmt:4' y = v + 10; */
return v + 10.0;

} else if(u == v) {
/* 'ifstmt:5' elseif u == v */
/* 'ifstmt:6' y = u * 2; */
return u * 2.0;

} else {
/* 'ifstmt:7' else */
/* 'ifstmt:8' y = v - 10; */
return v - 10.0;

}
}

For Statements
The comment for the for statement header immediately precedes the
generated code that implements the header. This comment appears after any
user comment that precedes the generated code.

MATLAB Code.

function y = forstmt(u)

19-93

19 Generating C/C++ Code from MATLAB® Code

%#codegen
y = 0;
for i=1:u

y = y + 1;
end

Commented C Code.

real_T forstmt(real_T u)
{

real_T y;
real_T i;
/* 'forstmt:3' y = 0; */
y = 0.0;
/* 'forstmt:4' for i=1:u */
for(i = 1.0; i <= u; i++) {

/* 'forstmt:5' y = y + 1; */
y++;

}
return y;

}

While Statements
The comment for the while statement header immediately precedes the
generated code that implements the statement header. This comment appears
after any user comment that precedes the generated code.

MATLAB Code.

function y = subfcn(y)
coder.inline('never');
while y < 100

y = y + 1;
end

Commented C Code.

static void m_refp1_subfcn(real_T *y)
{

19-94

Generation of Traceable Code

/* 'whilestmt:6' coder.inline('never'); */
/* 'whilestmt:7' while y < 100 */
while(*y < 100.0) {

/* 'whilestmt:8' y = y + 1; */
(*y)++;

}
}

Switch Statements
The comment for the switch statement header immediately precedes the
generated code that implements the statement header. This comment appears
after any user comment that precedes the generated code. The comments for
the case and otherwise clauses appear immediately after the generated code
that implements the clause, and before the code generated for statements
in the clause.

MATLAB Code.

function y = switchstmt(u)
%#codegen
y = 0;
switch u

case 1
y = y + 1;

case 3
y = y + 2;

otherwise
y = y - 1;

end

Commented C Code.

real_T switchstmt(real_T u)
{

/* 'switchstmt:3' y = 0; */
/* 'switchstmt:4' switch u */
switch((int32_T)u) {
case 1:

19-95

19 Generating C/C++ Code from MATLAB® Code

/* 'switchstmt:5' case 1 */
/* 'switchstmt:6' y = y + 1; */
return 1.0;
break;

case 3:
/* 'switchstmt:7' case 3 */
/* 'switchstmt:8' y = y + 2; */
return 2.0;
break;

default:
/* 'switchstmt:9' otherwise */
/* 'switchstmt:10' y = y - 1; */
return -1.0;
break;

}
}

Traceability Limitations
For MATLAB Coder, there are traceability limitations:

• You cannot include MATLAB source code as comments for:

- MathWorks toolbox functions

- P-code

• The appearance or location of comments can vary depending on the
following conditions:

- Even if the implementation code is eliminated, for example, due to
constant folding, comments might still appear in the generated code.

- If a complete function or code block is eliminated, comments might be
eliminated from the generated code.

- For certain optimizations, the comments might be separated from the
generated code.

- Even if you do not choose to include source code comments in the
generated code, the generated code always includes legally required
comments from the MATLAB source code.

19-96

Generate Code for Enumerated Types

Generate Code for Enumerated Types
When generating MEX functions from MATLAB code, use enumerated
types based on int32 with MATLAB Coder . When generating C code with
MATLAB Coder, you can also use this enumerated type, but int32 does not
provide methods for customizing the behavior of enumerated data.

19-97

19 Generating C/C++ Code from MATLAB® Code

Generate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 19-98

“Control Dynamic Memory Allocation” on page 19-99

“Generating Code for MATLAB Functions with Variable-Size Data” on
page 19-101

“Generate Code for a MATLAB Function That Expands a Vector in a Loop”
on page 19-103

“Using Dynamic Memory Allocation for an "Atoms" Simulation” on page
19-110

Variable-size data is data whose size might change at run time. You can
use MATLAB Coder to generate C/C++ code from MATLAB code that uses
variable-size data. MATLAB supports bounded and unbounded variable-size
data for code generation. Bounded variable-size data has fixed upper bounds.
This data can be allocated statically on the stack or dynamically on the
heap. Unbounded variable-size data does not have fixed upper bounds. This
data must be allocated on the heap. By default, for MEX and C/C++ code
generation, support for variable-size data is enabled and dynamic memory
allocation is enabled for variable-size arrays whose size exceeds a configurable
threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code generation, support for variable-size
data is enabled. You modify variable sizing settings from the project settings
dialog box, the command line, or using dialog boxes.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the General tab.

19-98

Generate Code for Variable-Size Data

4 On the Memory tab, select or clear Enable variable-sizing. Close the
dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays
whose size exceeds a configurable threshold. If you disable support for
variable-size data (see “Disable Support for Variable-Size Data” on page
19-98), you also disable dynamic memory allocation. You can modify dynamic
memory allocation settings from the project settings dialog box or the
command line.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Memory tab.

4 On the Memory tab, set Dynamic memory allocation to one of the
following options:

19-99

19 Generating C/C++ Code from MATLAB® Code

Setting Action

Never Dynamic memory allocation is
disabled. All variable-size data is
allocated statically on the stack.

For all variable-sized arrays Dynamic memory allocation is
enabled for all variable-size arrays.
All variable-size data is allocated
dynamically on the heap.

For arrays with maximum size
above threshold

Dynamic memory allocation is
enabled for all variable-size arrays
whose size exceeds the Dynamic
memory allocation threshold.
Variable-size arrays whose size
is less than this threshold are
allocated on the stack.

5 Optionally, if you set Dynamic memory allocation to For arrays
with maximum size above threshold, configure Dynamic memory
allocation threshold to fine tune memory allocation.

6 Close the dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX
function:

mexcfg = coder.config('mex');

2 Set the DynamicMemoryAllocation option:

19-100

Generate Code for Variable-Size Data

Setting Action

mexcfg.DynamicMemoryAllocation='Off';
Dynamic memory allocation
is disabled. All variable-size
data is allocated statically
on the stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays';
Dynamic memory
allocation is enabled for
all variable-size arrays.
All variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold';
Dynamic memory
allocation is enabled for all
variable-size arrays whose
size (in bytes) is greater than
or equal to the value specified
using the Dynamic memory
allocation threshold
parameter. Variable-size
arrays whose size is less than
this threshold are allocated
on the stack.

3 Optionally, if you set Dynamic memory allocation to `Threshold',
configure Dynamic memory allocation threshold to fine tune memory
allocation.

4 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg foo

Generating Code for MATLAB Functions with
Variable-Size Data
Here is a basic workflow that first generates MEX code for verifying the
generated code and then generates standalone code after you are satisfied
with the result of the prototype.

19-101

19 Generating C/C++ Code from MATLAB® Code

To work through these steps with a simple example, see “Generate Code for a
MATLAB Function That Expands a Vector in a Loop” on page 19-103

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code. Use
the following command-line options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for
function foo. The first argument, 0, indicates the input data type (double)
and complexity (real). The second argument, [2 4], indicates the size, a
matrix with two dimensions. The third argument, 1, indicates that the
input is variable sized. The upper bound is 2 for the first dimension and 4
for the second dimension.

19-102

Generate Code for Variable-Size Data

Note During compilation, codegen detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, codegen performs a run-time check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Declare the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 7-23.

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

See “Specifying
Upper Bounds for
Variable-Size Data”
on page 7-6 and
“Diagnosing and Fixing
Size Mismatch Errors”
on page 7-23.

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on
page 19-99.

6 Generate C/C++ code using the codegen function.

Generate Code for a MATLAB Function That Expands
a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 19-104

19-103

19 Generating C/C++ Code from MATLAB® Code

• “Step 1: Add Compilation Directive for Code Generation” on page 19-104

• “Step 2: Address Issues Detected by the Code Analyzer” on page 19-105

• “Step 3: Generate MEX Code” on page 19-105

• “Step 4: Fix the Size Mismatch Error” on page 19-107

• “Step 5: Generate C Code” on page 19-108

• “Step 6: Change the Dynamic Memory Allocation Threshold” on page
19-109

About the MATLAB Function uniquetol
This example uses the function uniquetol. This function returns in vector B a
version of input vector A, where the elements are unique to within tolerance
tol of each other. In vector B, abs(B(i) - B(j)) > tol for all i and j. Initially,
assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 1: Add Compilation Directive for Code Generation
Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

19-104

Generate Code for Variable-Size Data

end
end

Step 2: Address Issues Detected by the Code Analyzer
The Code Analyzer detects that variable B might change size in the for-loop.
It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the codegen function.

1 Generate a MEX function for uniquetol:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to
function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(0,[1 100],1) defines input A as a real double
vector with a fixed upper bound. Its first dimension is fixed at 1 and its
second dimension can vary in size up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command
Line” on page 19-48.

• The second argument, coder.typeof(0), defines input tol as a real
double scalar.

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur.

19-105

19 Generating C/C++ Code from MATLAB® Code

For more information, see the codegen reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =
A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

19-106

Generate Code for Variable-Size Data

Step 4: Fix the Size Mismatch Error
To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize declares every instance of B in uniquetol
to be variable sized.

2 Generate code again using the same command:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the current folder, codegen generates a MEX function for uniquetol
and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, select the Variables tab.

19-107

19 Generating C/C++ Code from MATLAB® Code

The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 5: Generate C Code
Generate C code for variable-size inputs. By default, codegen allocates
memory statically for any data whose size is less than the dynamic memory
allocation threshold of 64 kilobytes. If the size of the data exceeds the
threshold or is unbounded, codegen allocates memory dynamically on the
heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');

2 Issue this command:

codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location,
codegen\lib\uniquetol and provides a link to the code generation report.

19-108

Generate Code for Variable-Size Data

3 Click the View report link.

4 In the code generation report, click the C code tab.

5 On the C code tab, click the link to uniquetol.h.

The function declaration is:

extern void uniquetol(const real_T A_data[100], const int32_T A_size[2],...
real_T tol, emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less
than the default dynamic memory allocation threshold of 64k bytes,
allocates this memory statically. The generated code contains two pieces of
information about A:

• real_T A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int32_T_A_sizes[2]: the actual size of the input.

Because B is variable size with unknown upper bounds, in the generated
code, codegen represents B as emxArray_real_T. MATLAB provides utility
functions for creating and interacting with emxArrays in your generated
code. For more information, see “C Code Interface for Arrays” on page 7-19.

Step 6: Change the Dynamic Memory Allocation Threshold
In this step, you reduce the dynamic memory allocation threshold and
generate code for an input that exceeds this threshold.

1 Set the dynamic memory allocation threshold to 4 kilobytes and generate
code where the size of input A exceeds this threshold.

cfg.DynamicMemoryAllocationThreshold=4096;
codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

2 View the generated code in the report. Because the maximum size of input
A now exceeds the dynamic memory allocation threshold, codegen allocates
A dynamically on the heap and represents A as emxArray_real_T.

19-109

19 Generating C/C++ Code from MATLAB® Code

extern void uniquetol(const emxArray_real_T *A, ...
real_T tol, emxArray_real_T *B);

Using Dynamic Memory Allocation for an "Atoms"
Simulation
This example shows how to generate code for a MATLAB algorithm that
runs a simulation of bouncing "atoms" and returns the result after a number
of iterations. There are no upper bounds on the number of atoms that the
algorithm accepts, so this example takes advantage of dynamic memory
allocation.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_atoms');

About the ’run_atoms’ Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying
gravity and energy loss).

help run_atoms

atoms = run_atoms(atoms,n)
atoms = run_atoms(atoms,n,iter)
Where 'atoms' the initial and final state of atoms (can be empty)

'n' is the number of atoms to simulate.
'iter' is the number of iterations for the simulation

(if omitted it is defaulted to 3000 iterations.)

Set Up Code Generation Options

Create a code generation configuration object

19-110

Generate Code for Variable-Size Data

cfg = coder.config;
% Enable dynamic memory allocation for variable size matrices.
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure ’Atom’ to provide the compiler with the necessary
information about input parameter types. An atom is a structure with four
fields (x,y,vx,vy) specifying position and velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

Generate a MEX Function for Testing

Use the command ’codegen’ with the following arguments:

’-args {coder.typeof(atom, [1 Inf]),0,0}’ indicates that the first argument is a
row vector of atoms where the number of columns is potentially infinite. The
second and third arguments are scalar double values.

’-config cfg’ enables dynamic memory allocation, defined by workspace
variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o ru

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration
steps given an empty list of atoms. The return value is the state of all the
atoms after simulation is complete.

atoms = run_atoms_mex([],10000,1000)

atoms =

1x10000 struct array with fields:
x
y
vx

19-111

19 Generating C/C++ Code from MATLAB® Code

vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

atoms =

1x10000 struct array with fields:
x
y
vx
vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

In MATLAB the default data type is double. However, integers are usually
used in C code, so pass int32 integer example values to represent the number
of atoms and iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -co

Inspect Generated Code

When creating a library the code is generated in the folder
codegen/lib/run_atoms/ The code in this folder is self contained. To interface
with the compiled C code you need only the generated header files and the
library file.

19-112

Generate Code for Variable-Size Data

dir codegen/lib/run_atoms

. rtw_proj.tmw run_atoms_emxutil.obj

.. rtwtypes.h run_atoms_initialize.c
buildInfo.mat run_atoms.c run_atoms_initialize.h
rtGetInf.c run_atoms.h run_atoms_initialize.ob
rtGetInf.h run_atoms.lib run_atoms_ref.rsp
rtGetInf.obj run_atoms.lnk run_atoms_rtw.bat
rtGetNaN.c run_atoms.obj run_atoms_rtw.mk
rtGetNaN.h run_atoms_emxAPI.c run_atoms_terminate.c
rtGetNaN.obj run_atoms_emxAPI.h run_atoms_terminate.h
rt_nonfinite.c run_atoms_emxAPI.obj run_atoms_terminate.obj
rt_nonfinite.h run_atoms_emxutil.c run_atoms_types.h
rt_nonfinite.obj run_atoms_emxutil.h

Write a C Main Function

Typically, the main function is platform-dependent code that performs
rendering or some other processing. In this example, a pure ANSI-C function
produces a file ’run_atoms_state.m’ which (when run) contains the final state
of the atom simulation.

type run_atoms_main.c

/* Include standard C libraries */
#include <stdio.h>

/* The interface to the main function we compiled. */
#include "codegen/lib/run_atoms/run_atoms.h"

/* The interface to EMX data structures. */
#include "codegen/lib/run_atoms/run_atoms_emxAPI.h"

void main(int argc, char **argv)
{

int i;
emxArray_Atom *atoms;

19-113

19 Generating C/C++ Code from MATLAB® Code

/* Main arguments unused */
(void) argc;
(void) argv;

/* Initially create an empty row vector of atoms (1 row, 0 columns) */
atoms = emxCreate_Atom(1, 0);

/* Call the function to simulate 10000 atoms in 1000 iteration steps */
run_atoms(atoms, 10000, 1000);

/* Call the function again to do another 500 iteration steps */
run_atoms(atoms, 10000, 500);

/* Print the result to standard output */
for (i = 0; i < atoms->size[1]; i++) {

printf("%f %f %f %f\n",
atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->d

}

/* Free memory */
emxDestroyArray_Atom(atoms);

}

Create a Configuration Object for Executables

cfg = coder.config('exe');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code
(run_atoms_main.c) The ’codegen’ command automatically generates C code
from the MATLAB code, then calls the C compiler to bundle this generated
code with the custom C code (run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32

Run the Executable

19-114

Generate Code for Variable-Size Data

After simulation is complete, this produces the file ’atoms_state.mat’. The
MAT file is a 10000x4 matrix, where each row is the position and velocity of
an atom (x, y, vx, vy) representing the current state of the whole system.

[~,atoms_data] = system(['.' filesep 'run_atoms']);
fh = fopen('atoms_state.mat', 'w');
fprintf(fh, '%s', atoms_data);
fclose(fh);

Fetch the State

Running the executable produced ’atoms_state.mat’. Now, recreate the
structure array from the saved matrix

load atoms_state.mat -ascii
clear atoms
for i = 1:size(atoms_state,1)

atoms(1,i).x = atoms_state(i,1);
atoms(1,i).y = atoms_state(i,2);
atoms(1,i).vx = atoms_state(i,3);
atoms(1,i).vy = atoms_state(i,4);

end

Render the State

Call ’run_atoms_mex’ with zero iterations to render only

run_atoms_mex(atoms, 10000, 0);

19-115

19 Generating C/C++ Code from MATLAB® Code

Clean Up

Remove files and return to original folder

Run Command: Cleanup

if ispc
delete run_atoms.exe

else
delete run_atoms

end
delete atoms_state.mat
cleanup

19-116

Code Generation for MATLAB® Classes

Code Generation for MATLAB Classes
You can generate code for MATLAB value and handle classes and user-defined
System objects that inherit from a handle class. For more information, see
“MATLAB Classes”.

19-117

19 Generating C/C++ Code from MATLAB® Code

How MATLAB Coder Partitions Generated Code

In this section...

“Partitioning Generated Files” on page 19-118

“How to Select the File Partitioning Method” on page 19-118

“Partitioning Generated Files with One C/C++ File Per MATLAB File”
on page 19-119

“Generated Files and Locations” on page 19-124

“File Partitioning and Inlining” on page 19-127

Partitioning Generated Files
By default, during code generation, MATLAB Coder partitions the code to
match your MATLAB file structure. This one-to-one mapping lets you easily
correlate your files generated in C/C++ with the compiled MATLAB code.
MATLAB Coder cannot produce the same one-to-one correspondence for
MATLAB functions that are inlined in generated code (see “File Partitioning
and Inlining” on page 19-127).

Alternatively, you can select to generate all C/C++ functions into a single
file. For more information, see “How to Select the File Partitioning Method”
on page 19-118. This option facilitates integrating your code with existing
embedded software.

How to Select the File Partitioning Method

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click the More settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Code Appearance tab.

19-118

How MATLAB® Coder™ Partitions Generated Code

4 On the Code Appearance tab, set the Generated file partitioning
method to Generate one file for each MATLAB file or Generate all
functions into a single file. Close the dialog box.

At the Command Line
Use the codegen configuration object FilePartitionMethod option. For
example, to compile the function foo that has no inputs and generate one
C/C++ file for each MATLAB function:

1 Create a MEX configuration object and set the FilePartitionMethod
option:

mexcfg = coder.config('mex');
mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo
% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per
MATLAB File
By default, for MATLAB functions that are not inlined, MATLAB Coder
generates one C/C++ file for each MATLAB file. In this case, MATLAB Coder
partitions generated C/C++ code so that it corresponds to your MATLAB files.

How MATLAB Coder Partitions Entry-Point MATLAB Functions
For each entry-point (top-level) MATLAB function, MATLAB Coder generates
one C/C++ source, header, and object file with the same name as the MATLAB
file.

For example, suppose you define a simple function foo that calls the function
identity. The source file foo.m contains the following code:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

19-119

19 Generating C/C++ Code from MATLAB® Code

Here is the code for identity.m :

function y = identity(u) %#codegen
y = u;

In the MATLAB Coder project interface, to generate a C static library for
foo.m:

1 First, define the inputs u and v. For more information, see “Specifying
Properties of Primary Function Inputs in a Project” on page 16-7.

2 In the MATLAB Coder project, click the Build tab.

3 On the Build tab:

a Set the Output type to C/C++ Static Library.

b Click the More settings link to view the project settings for the selected
output type.

c In the Project Settings dialog box, click the All Settings tab.

d On this tab, under Function Inlining, set the Inline threshold
parameter to 0.

4 Click Build to generate a library.

To generate a C static library for foo.m at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and
identity in your output folder.

19-120

How MATLAB® Coder™ Partitions Generated Code

How MATLAB Coder Partitions Local Functions
For each local function, MATLAB Coder generates code in the same C/C++
file as the calling function. For example, suppose you define a function foo
that calls a local function identity:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

function y = identity(u)
y = u;

To generate a C++ library, before generating code, select a C++ compiler and
set C++ as your target language. For example, at the command line:

19-121

19 Generating C/C++ Code from MATLAB® Code

1 Select C++ as your target language:

cfg = coder.config('lib')
cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the
identity local function.

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

19-122

How MATLAB® Coder™ Partitions Generated Code

...
/* Function Definitions */
real_T foo(real_T u, real_T v)
{

return (real_T)(real32_T)u + v;
}
...

How MATLAB Coder Partitions Overloaded Functions
An overloaded function is a function that has multiple implementations to
accommodate different classes of input. For each implementation (that is
not inlined), MATLAB Coder generates a separate C/C++ file with a unique
numeric suffix.

For example, suppose you define a simple function multiply_defined:

%#codegen
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle
inputs of type single (in an @single subfolder) and another for inputs of
type double (in an @double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));
y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For
example, at the MATLAB command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

19-123

19 Generating C/C++ Code from MATLAB® Code

MATLAB Coder generates C source, header, and object files for each
implementation of multiply_defined, as highlighted. Use numeric suffixes
to create unique file names.

Generated Files and Locations
The types and locations of generated files depend on the target that you
specify. For all targets, if errors or warnings occur during build or if you
explicitly request a report, MATLAB Coder generates reports.

19-124

How MATLAB® Coder™ Partitions Generated Code

Each time MATLAB Coder generates the same type of output for the same
code or project, it removes the files from the previous build. If you want to
preserve files from a build, copy them to a different location before starting
another build.

Generated Files for MEX Targets
By default, MATLAB Coder generates the following files for MEX function
(mex) targets.

Type of Files Location

Platform-specific MEX files Current folder

MEX, and C/C++ source,
header, and object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets
By default, MATLAB Coder generates the following files for C/C++ static
library targets.

Type of Files Location

C/C++ source, library, header,
and object files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets
By default, MATLAB Coder generates the following files for C/C++ dynamic
library targets.

Type of Files Location

C/C++ source, library, header,
and object files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

19-125

19 Generating C/C++ Code from MATLAB® Code

Generated Files for C/C++ Executable Targets
By default, MATLAB Coder generates the following files for C/C++ executable
targets.

Type of Files Location

C/C++ source, header, and
object files

codegen/exe/function_name

HTML reports codegen/exe/function_name/html

Changing Names and Locations of Generated Files

In the Project Settings Dialog Box.

To change the... Do this...

Output file name On the Build tab, enter the name in the Output file
name field.

Output file location On the Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the Paths
tab.

3 On this tab, set Build folder to Specified
folder.

The Build folder name field appears.

4 For this field, either browse to the output file
location or enter the full path. The path must not
contain spaces.

19-126

How MATLAB® Coder™ Partitions Generated Code

To change the... Do this...

Note The output file location should not contain:

• Spaces, as this can lead to code generation failures
in certain operating system configurations.

• Non 7-bit ASCII characters, such as Japanese
characters.

At the Command Line. You can change the name and location of generated
files by using the codegen options -o and -d.

File Partitioning and Inlining
How MATLAB Coder partitions generated C/C++ code depends on whether
you choose to generate one C/C++ file for each MATLAB file and whether
you inline your MATLAB functions.

If you... MATLAB Coder...

Generate all C/C++
functions into a single
file and disable inlining

Generates a single C/C++ file without inlining
any functions.

Generate all C/C++
functions into a single
file and enable inlining

Generates a single C/C++ file. Inlines functions
whose sizes fall within the inlining threshold.

19-127

19 Generating C/C++ Code from MATLAB® Code

If you... MATLAB Coder...

Generate one C/C++
file for each MATLAB
file and disable inlining

Partitions generated C/C++ code to match
MATLAB file structure. See “Partitioning
Generated Files with One C/C++ File Per
MATLAB File” on page 19-119.

Generate one C/C++
file for each MATLAB
file and enable inlining

Places inlined functions in the same C/C++ file
as the function into which they are inlined. Even
when you enable inlining, MATLAB Coder does
not inline all functions, only those whose sizes
fall within the inlining threshold. For MATLAB
functions that are not inlined, MATLAB Coder
partitions the generated C/C++ code, as described.

19-128

How MATLAB® Coder™ Partitions Generated Code

Tradeoffs Between File Partitioning and Inlining
Weighing file partitioning against inlining represents a trade-off between
readability, efficiency, and ease of integrating your MATLAB code with
existing embedded software.

If You
Generate...

Generated
C/C++ Code

Advantages Disadvantages

All C/C++
functions into
a single file

Does not match
MATLAB file
structure

Easier to
integrate
with existing
embedded
software

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and enable
inlining

Does not exactly
match MATLAB
file structure

Program
executes faster

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and disable
inlining

Matches
MATLAB file
structure

Easy to map
C/C++ code
to original
MATLAB file

Program runs
less efficiently

How Disabling Inlining Affects File Partitioning
Inlining is enabled by default. Therefore, to generate one C/C++ file for each
top-level MATLAB function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function.
For more information, see “How to Select the File Partitioning Method”
on page 19-118.

• Explicitly disable inlining, either globally or for individual MATLAB
functions.

How to Disable Inlining Globally in the Project Settings Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

19-129

19 Generating C/C++ Code from MATLAB® Code

2 On this tab, click the More settings link to view the project settings for
the selected output type.

3 In the Project Settings dialog box, click the All Settings tab.

4 On this tab, under Function Inlining set the Inlining threshold to
zero. Close the dialog box.

How to Disable Inlining Globally at the Command Line. To disable
inlining of functions, use the -O disable:inline option with codegen. For
example, to disable inlining and generate a MEX function for a function foo
that has no inputs:

codegen -O disable:inline foo

For more information, see the description of codegen.

How to Disable Inlining for Individual Functions. To disable inlining for
an individual MATLAB function, add the directive coder.inline('never');
on a separate line in the source MATLAB file, after the function signature.

function y = foo(u,v) %#codegen
coder.inline('never');
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

coder.inline has no effect on entry-point functions; codegen does not inline
entry-point functions.

The directive applies only to the function in which it appears. In this example,
inlining is disabled for function foo, but not for identity, a top-level function
defined in a separate MATLAB file and called by foo. To disable inlining for
identity, add this directive after its function signature in the source file
identity.m. For more information, see coder.inline.

For a more efficient way to disable inlining for both functions, see “How to
Disable Inlining Globally at the Command Line” on page 19-130.

19-130

How MATLAB® Coder™ Partitions Generated Code

Correlating C/C++ Code with Inlined Functions
To correlate the C/C++ code that you generate with the original inlined
functions, add comments in the MATLAB code to identify the function. These
comments will appear in the C/C++ code and help you map the generated code
back to the original MATLAB functions.

Modifying the Inlining Threshold
To change inlining behavior, adjust the inlining threshold parameter.

Modifying the Inlining Threshold in the Project Settings Dialog Box.
On the Project Settings dialog box All Settings tab, under Function
Inlining, set the value of the Inline threshold parameter.

Modifying the Inlining Threshold at the Command Line. Set the
value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

19-131

19 Generating C/C++ Code from MATLAB® Code

Customize the Post-Code-Generation Build Process

In this section...

“Workflow for Customizing Post-Code-Generation Builds” on page 19-132

“Build Information Object” on page 19-132

“Build Information Functions” on page 19-133

“Programming a Post-Code-Generation Command” on page 19-171

“Using a Post-Code-Generation Command in Your Build” on page 19-171

“Programming and Using a Post-Code-Generation Command at the
Command Line” on page 19-173

Workflow for Customizing Post-Code-Generation
Builds
For certain applications, you might want to control aspects of the build
process that occur after code generation but before compilation. For example,
you might want to specify compiler or linker options. You can customize build
processing that occurs after code generation using MATLAB Coder for MEX
functions, C/C++ libraries and C/C++ executables.

To customize a post-code-generation build:

1 Program a post-code-generation command. Typically, you use this
command to get the project name and build information or to add data to
the build information object.

2 Use this command in your build.

Build Information Object
At the start of a build, the MATLAB Coder build process logs the following
project, build option, and dependency information to a temporary build
information object, RTW.BuildInfo:

• Compiler options

• Preprocessor identifier definitions

19-132

Customize the Post-Code-Generation Build Process

• Linker options

• Source files and paths

• Include files and paths

• Precompiled external libraries

Use the “Build Information Functions” on page 19-133 to access
this information in the build information object. “Programming a
Post-Code-Generation Command” on page 19-171 explains how to use the
functions to control a post-code-generation build.

Build Information Functions

• “addCompileFlags” on page 19-134

• “addDefines” on page 19-135

• “addIncludeFiles” on page 19-137

• “addIncludePaths” on page 19-139

• “addLinkFlags” on page 19-141

• “addLinkObjects” on page 19-142

• “addNonBuildFiles” on page 19-146

• “addSourceFiles” on page 19-148

• “addSourcePaths” on page 19-150

• “addTMFTokens” on page 19-153

• “findIncludeFiles” on page 19-155

• “getCompileFlags” on page 19-156

• “getDefines” on page 19-156

• “getFullFileList” on page 19-158

• “getIncludeFiles” on page 19-159

• “getIncludePaths” on page 19-160

• “getLinkFlags” on page 19-161

19-133

19 Generating C/C++ Code from MATLAB® Code

• “getNonBuildFiles” on page 19-162

• “getSourceFiles” on page 19-164

• “getSourcePaths” on page 19-166

• “packNGo” on page 19-167

• “updateFilePathsAndExtensions” on page 19-169

• “updateFileSeparator” on page 19-170

Use these functions to access or write data to the build information object.
Typically, the syntax is:

buildInfo.function_name(input_param1, ..., input_paramn)

addCompileFlags

Purpose. Add compiler options to project’s build information

Syntax.
addCompileFlags(buildinfo, options, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies the
compiler options to be added to the build information. The function adds
each option to the end of a compiler option vector. If you specify multiple
options within a single character array, for example '-Zi -Wall', the
function adds the string to the vector as a single element. For example,
if you add '-Zi -Wall' and then '-O3', the vector consists of two
elements, as shown below.

'-Zi -Wall' '-O3'

19-134

Customize the Post-Code-Generation Build Process

groups (optional)
A character array or cell array of character arrays that groups specified
compiler options. You can use groups to

• Document the use of specific compiler options

• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options

• Multiple group names to collections of compiler options (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all compiler options

Character array.

Apply different group
names to compiler
options

Cell array of character arrays such that
the number of group names matches the
number of elements you specify for options.

Description. The addCompileFlags function adds specified compiler options
to the project’s build information. MATLAB Coder stores the compiler options
in a vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addDefines

Purpose. Add preprocessor macro definitions to project’s build information

Syntax.
addDefines(buildinfo, macrodefs, groups)

groups is optional.

19-135

19 Generating C/C++ Code from MATLAB® Code

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

macrodefs
A character array or cell array of character arrays that specifies the
preprocessor macro definitions to be added to the object. The function
adds each definition to the end of a compiler option vector. If you specify
multiple definitions within a single character array, for example '-DRT
-DDEBUG', the function adds the string to the vector as a single element.
For example, if you add '-DPROTO -DDEBUG' and then '-DPRODUCTION',
the vector consists of two elements, as shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups specified
definitions. You can use groups to

• Document the use of specific macro definitions

• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions

• Multiple group names to collections of macro definitions (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all macro definitions

Character array.

Apply different group
names to macro
definitions

Cell array of character arrays such that
the number of group names matches the
number elements you specify for macrodefs.

19-136

Customize the Post-Code-Generation Build Process

Description. The addDefines function adds specified preprocessor macro
definitions to the project’s build information. The MATLAB Coder software
stores the definitions in a vector. The function adds definitions to the end of
the vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you can use
an optional groups argument to group your options.

addIncludeFiles

Purpose. Add include files to project’s build information

object

Syntax.
addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of include files to be added to the build information.

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.h', and '*.h*'.

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include file vector

• Have a path that matches the path of a matching filename

19-137

19 Generating C/C++ Code from MATLAB® Code

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the include files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
include files. You can use groups to

• Document the use of specific include files

• Retrieve or apply groups of include files

You can apply

• A single group name to an include file

• A single group name to multiple include files

• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name to
all include files

Character array.

Apply different group
names to include files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

Description. The addIncludeFiles function adds specified include files
to the project’s build information. The MATLAB Coder software stores the
include files in a vector. The function adds the filenames to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

19-138

Customize the Post-Code-Generation Build Process

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all include files it adds to the
build information

Cell array of character arrays Pairs each character array with a specified include file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addIncludePaths

Purpose. Add include paths to project’s build information

Syntax.
addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies include
file paths to be added to the build information. The function adds the
paths to the end of a vector in the order that you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

19-139

19 Generating C/C++ Code from MATLAB® Code

groups (optional)
A character array or cell array of character arrays that groups specified
include paths. You can use groups to

• Document the use of specific include paths

• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path

• A single group name to multiple include paths

• Multiple group names to collections of multiple include paths

To... Specify groups as a...

Apply one group name
to all include paths

Character array.

Apply different group
names to include paths

Cell array of character arrays such that the
number of group names that you specify
matches the number of elements you specify
for paths.

Description. The addIncludePaths function adds specified include paths
to the project’s build information. The MATLAB Coder software stores the
include paths in a vector. The function adds the paths to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify
an optional groups argument. You can specify groups as a character array
or a cell array of character arrays.

19-140

Customize the Post-Code-Generation Build Process

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all include
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the length
of the cell array must match the length of
the cell array you specify for paths.

addLinkFlags

Purpose. Add link options to project’s build information

Syntax.
addLinkFlags(buildinfo, options, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

options
A character array or cell array of character arrays that specifies the
linker options to be added to the build information. The function adds
each option to the end of a linker option vector. If you specify multiple
options within a single character array, for example '-MD -Gy', the
function adds the string to the vector as a single element. For example,
if you add '-MD -Gy' and then '-T', the vector consists of two elements,
as shown below.

'-MD -Gy' '-T'

groups (optional)
A character array or cell array of character arrays that groups specified
linker options. You can use groups to

• Document the use of specific linker options

19-141

19 Generating C/C++ Code from MATLAB® Code

• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options

• Multiple group names to collections of linker options (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to all linker options

Character array.

Apply different group
names to linker options

Cell array of character arrays such that the
number of group names matches the number
of elements you specify for options.

Description. The addLinkFlags function adds specified linker options to the
project’s build information. The MATLAB Coder software stores the linker
options in a vector. The function adds options to the end of the vector based
on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addLinkObjects

Purpose. Add link objects to project’s build information

Syntax.
addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , linkobjs, and paths are optional. If you
specify an optional argument, you must specify all of the optional arguments
preceding it.

19-142

Customize the Post-Code-Generation Build Process

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

linkobjs
A character array or cell array of character arrays that specifies the
filenames of linkable objects to be added to the build information. The
function adds the filenames that you specify in the function call to a
vector that stores the object filenames in priority order. If you specify
multiple objects that have the same priority (see priority below), the
function adds them to the vector based on the order in which you specify
the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input

• Already exist in the linkable object filename vector

• Have a path that matches the path of a matching linkable object
filename

A duplicate entry consists of an exact match of a path string and
corresponding linkable object filename.

paths
A character array or cell array of character arrays that specifies paths
to the linkable objects. If you specify a character array, the path string
applies to all linkable objects.

priority (optional)
A numeric value or vector of numeric values that indicates the relative
priority of each specified link object. Lower values have higher priority.
The default priority is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling and
linking and exists in a specified location.

19-143

19 Generating C/C++ Code from MATLAB® Code

If precompiled is false (the default), the MATLAB Coder build process
creates the link object in the build folder.

This argument is ignored if linkonly equals true.

linkonly (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be used only for linking.

Specify true if the MATLAB Coder build process should not build, nor
generate rules in the makefile for building, the specified link object, but
should include it when linking the final executable. For example, you
can use this to incorporate link objects for which source files are not
available. If linkonly is true, the value of precompiled is ignored.

If linkonly is false (the default), rules for building the link objects
are added to the makefile. In this case, the value of precompiled
determines which subsection of the added rules is expanded,
START_PRECOMP_LIBRARIES (true) or START_EXPAND_LIBRARIES
(false).

groups (optional)
A character array or cell array of character arrays that groups specified
link objects. You can use groups to

• Document the use of specific link objects

• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object

• A single group name to multiple linkable objects

• Multiple group name to collections of multiple linkable objects

19-144

Customize the Post-Code-Generation Build Process

To... Specify groups as a...

Apply one group name
to all link objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that
the number of group names matches the
number elements you specify for linkobjs.

The default value of groups is {''}.

Description. The addLinkObjects function adds specified link objects to the
project’s build information. The MATLAB Coder software stores the link
objects in a vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to the
vector based on the order in which you specify them.

In addition to the required buildinfo, linkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled, linkonly,
and groups. You can specify paths and groups as a character array or a
cell array of character arrays.

If You Specify paths or
groups as a...

The Function...

Character array Applies the character array to all objects
it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length of the
cell array must match the length of the
cell array you specify for linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a value
or vector of values.

19-145

19 Generating C/C++ Code from MATLAB® Code

If You Specify priority,
precompiled, or linkonly as
a...

The Function...

Value Applies the value to all objects it adds to
the build information.

Vector of values Pairs each value with a specified object.
Thus, the length of the vector must match
the length of the cell array you specify for
linkobjs.

If you choose to specify an optional argument, you must specify all of the
optional arguments preceding it. For example, to specify that all objects are
precompiled using the precompiled argument, you must specify the priority
argument that precedes precompiled. You could pass the default priority
value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

addNonBuildFiles

Purpose. Add nonbuild-related files to project’s build information

Syntax.
addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of nonbuild-related files to be added to the build information.

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.DLL', and '*.D*'.

19-146

Customize the Post-Code-Generation Build Process

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the nonbuild files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
nonbuild files. You can use groups to

• Document the use of specific nonbuild files

• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file

• A single group name to multiple nonbuild files

• Multiple group names to collections of multiple nonbuild files

To... Specify groups as a...

Apply one group name to
all nonbuild files

Character array.

Apply different group
names to nonbuild files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

19-147

19 Generating C/C++ Code from MATLAB® Code

Description. The addNonBuildFiles function adds specified nonbuild-related
files, such as DLL files required for a final executable, or a README file,
to the project’s build information. The MATLAB Coder software stores the
nonbuild files in a vector. The function adds the filenames to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all nonbuild files it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourceFiles

Purpose. Add source files to project’s build information

Syntax.
addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies names
of the source files to be added to the build information.

19-148

Customize the Post-Code-Generation Build Process

The filename strings can include wildcard characters, provided that the
dot delimiter (.) is present. Examples are '*.*', '*.c', and '*.c*'.

The function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies paths
to the source files. The function adds the paths to the end of a vector
in the order that you specify them. If you specify a single path as a
character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups specified
source files. You can use groups to

• Document the use of specific source files

• Retrieve or apply groups of source files

You can apply

• A single group name to a source file

• A single group name to multiple source files

• Multiple group names to collections of multiple source files

19-149

19 Generating C/C++ Code from MATLAB® Code

To... Specify group as a...

Apply one group name to
all source files

Character array.

Apply different group
names to source files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

Description. The addSourceFiles function adds specified source files to the
project’s build information. The MATLAB Coder software stores the source
files in a vector. The function adds the filenames to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you can
specify optional paths and groups arguments. You can specify each optional
argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all source files it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified source file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourcePaths

Purpose. Add source paths to project’s build information

Syntax.
addSourcePaths(buildinfo, paths, groups)

groups is optional.

19-150

Customize the Post-Code-Generation Build Process

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies source
file paths to be added to the build information. The function adds the
paths to the end of a vector in the order that you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note The MATLAB Coder software does not check whether a specified
path string is valid.

groups (optional)
A character array or cell array of character arrays that groups specified
source paths. You can use groups to

• Document the use of specific source paths

• Retrieve or apply groups of source paths

19-151

19 Generating C/C++ Code from MATLAB® Code

You can apply

• A single group name to a source path

• A single group name to multiple source paths

• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name to
all source paths

Character array.

Apply different group
names to source paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

Description. The addSourcePaths function adds specified source paths to
the project’s build information. The MATLAB Coder software stores the
source paths in a vector. The function adds the paths to the end of the vector
in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can specify
an optional groups argument . You can specify groups as a character array
or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all source
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the length
of the character array or cell array must
match the length of the cell array you
specify for paths.

Note The MATLAB Coder software does not check whether a specified path
string is valid.

19-152

Customize the Post-Code-Generation Build Process

addTMFTokens

Purpose. Add template makefile (TMF) tokens that provide build-time
information for makefile generation

Syntax.
addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

tokennames
A character array or cell array of character arrays that specifies names
of TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to be added to the
build information. The function adds the token names to the end of a
vector in the order that you specify them.

If you specify a token name that already exists in the vector, the first
instance takes precedence and its value used for replacement.

tokenvalues
A character array or cell array of character arrays that specifies TMF
token values corresponding to the previously-specified TMF token
names. The function adds the token values to the end of a vector in
the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups specified
TMF tokens. You can use groups to

• Document the use of specific TMF tokens

• Retrieve or apply groups of TMF tokens

You can apply

• A single group name to a TMF token

• A single group name to multiple TMF tokens

19-153

19 Generating C/C++ Code from MATLAB® Code

• Multiple group names to collections of multiple TMF tokens

To... Specify groups as a...

Apply one group name to
all TMF tokens

Character array.

Apply different group
names to TMF tokens

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for tokennames.

Description. Call the addTMFTokens function inside a post code generation
command to provide build-time information to help customize makefile
generation. The tokens specified in the addTMFTokens function call must
be handled appropriately in the template makefile (TMF) for the target
selected for your project. For example, if your post code generation command
calls addTMFTokens to add a TMF token named |>CUSTOM_OUTNAME<| that
specifies an output file name for the build, the TMF must act on the value of
|>CUSTOM_OUTNAME<| to achieve the desired result.

The addTMFTokens function adds specified TMF token names and values
to the project’s build information. The MATLAB Coder software stores the
TMF tokens in a vector. The function adds the tokens to the end of the vector
in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues
arguments, you can specify an optional groups argument. You can specify
groups as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all TMF tokens it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified TMF token.
Thus, the length of the cell array must match the length of
the cell array you specify for tokennames.

19-154

Customize the Post-Code-Generation Build Process

findIncludeFiles

Purpose. Find and add include (header) files to build information object

Syntax.
findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.

• Can include any combination of alphanumeric and underscore (_)
characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp
.x

Description. The findIncludeFiles function

• Searches for include files, based on specified file name extension patterns,
in all source and include paths recorded in a project’s build information
object

• Adds the files found, along with their full paths, to the build information
object

• Deletes duplicate entries

19-155

19 Generating C/C++ Code from MATLAB® Code

getCompileFlags

Purpose. Compiler options from project’s build information

Syntax.
options = getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of compiler flags you do not want the function to return.

Output Arguments. Compiler options stored in the project’s build
information.

Description. The getCompileFlags function returns compiler options
stored in the project’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getDefines

Purpose. Preprocessor macro definitions from project’s build information

19-156

Customize the Post-Code-Generation Build Process

Syntax.
[macrodefs, identifiers, values] = getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of macro definitions you do not want the function to return.

Output Arguments. Preprocessor macro definitions stored in the project’s
build information. The function returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D prefix

identifiers Names of the macros

values Values assigned to the macros (anything
specified to the right of the first equals sign)
; the default is an empty string ('')

Description. The getDefines function returns preprocessor macro
definitions stored in the project’s build information. When the function
returns a definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

• Changes a lowercase -d to -D

19-157

19 Generating C/C++ Code from MATLAB® Code

Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getFullFileList

Purpose. All files from project’s build information

Syntax.
[fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

fcase (optional)
The string 'source', 'include', or 'nonbuild'. If the argument is
omitted, the function returns all files from the build information object.

If You Specify... The Function...

'source' Returns source files from the build
information object.

'include' Returns include files from the build
information object.

'nonbuild' Returns nonbuild files from the build
information object.

Output Arguments. Fully-qualified file paths and file names for files stored
in the project’s build information.

19-158

Customize the Post-Code-Generation Build Process

Note Usually it is unnecessary to resolve the path of every file in the project
build information, because the makefile for the project build will resolve file
locations based on source paths and rules. Therefore, getFullFileList
returns the path for each file only if a path was explicitly associated with the
file when it was added, or if you called updateFilePathsAndExtensions to
resolve file paths and extensions before calling getFullFileList.

Description. The getFullFileList function returns the fully-qualified
paths and names of all files, or files of a selected type (source, include, or
nonbuild), stored in the project’s build information.

getIncludeFiles

Purpose. Get include files from project’s build information

Syntax.
files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

19-159

19 Generating C/C++ Code from MATLAB® Code

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include files you do not want the function to return.

Returns. Names of include files stored in the project’s build information.

Description. The getIncludeFiles function returns the names of include
files stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getIncludePaths

Purpose. Get include paths from project’s build information

Syntax.
files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

19-160

Customize the Post-Code-Generation Build Process

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of include paths you do not want the function to return.

Output Arguments. Paths of include files stored in the build information
object.

Description. The getIncludePaths function returns the names of include file
paths stored in the project’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getLinkFlags

Purpose. Link options from project’s build information

19-161

19 Generating C/C++ Code from MATLAB® Code

Syntax.
options=getLinkFlags(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags you
want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker flags you
do not want the function to return. To exclude groups and not include
specific groups, specify an empty cell array ('') for includeGroups.

Output Arguments. Linker options stored in the project’s build information.

Description. The getLinkFlags function returns linker options stored
in the project’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getNonBuildFiles

Purpose. Nonbuild-related files from project’s build information

Syntax.
files=getNonBuildFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

19-162

Customize the Post-Code-Generation Build Process

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of nonbuild files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of nonbuild files you do not want the function to return.

Output Arguments. Names of nonbuild files stored in the project’s build
information.

19-163

19 Generating C/C++ Code from MATLAB® Code

Description. The getNonBuildFiles function returns the names of
nonbuild-related files, such as DLL files required for a final executable,
or a README file, stored in the project’s build information. Use the
concatenatePaths and replaceMatlabroot arguments to control whether
the function includes paths and your MATLAB root definition in the output it
returns. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of nonbuild files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getSourceFiles

Purpose. Source files from project’s build information

Syntax.
srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename with
its corresponding path.

false Returns only filenames.

19-164

Customize the Post-Code-Generation Build Process

Note Usually it is unnecessary to resolve the path of every file in the
project build information, because the makefile for the project build
will resolve file locations based on source paths and rules. Therefore,
specifying true for concatenatePaths returns the path for each file only
if a path was explicitly associated with the file when it was added, or if
you called updateFilePathsAndExtensions to resolve file paths and
extensions before calling getSourceFiles.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source files you do not want the function to return.

Output Arguments. Names of source files stored in the project’s build
information.

Description. The getSourceFiles function returns the names of source
files stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

19-165

19 Generating C/C++ Code from MATLAB® Code

getSourcePaths

Purpose. Source paths from project’s build information

Syntax.
files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies groups
of source paths you do not want the function to return.

Output Arguments. Paths of source files stored in the project’s build
information.

19-166

Customize the Post-Code-Generation Build Process

Description. The getSourcePaths function returns the names of source file
paths stored in the project build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
source file paths that the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

packNGo

Purpose. Package generated code in zip file for relocation

Syntax.
packNGo(buildinfo, propVals...)

propVals is optional.

Input Arguments. Arguments

buildinfo
Build information loaded from the build folder.

propVals (optional)
A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package all generated code files in a zip
file as a single, flat folder

'packType' 'flat' (default)

Package generated code files
hierarchically in a primary zip file
that contains three secondary zip files:
• mlrFiles.zip — files in your

matlabroot folder tree

• sDirFiles.zip — files in and under
your build folder

'packType' 'hierarchical'
Paths for files in the
secondary zip files are
relative to the root folder
of the primary zip file.

19-167

19 Generating C/C++ Code from MATLAB® Code

To... Specify Property... With Value...

• otherFiles.zip — required files not
in the matlabroot or start folder trees

Specify a file name for the primary zip file 'fileName' 'string'
Default:'untitled.zip'
If you omit the .zip file
extension, the function
adds it.

Include only the minimal header files
required to build the code in the zip file

'minimalHeaders' true (default)

Include all header files found on the
include path in the zip file

'minimalHeaders' false

Description. The packNGo function packages the following code files in a
compressed zip file so you can relocate, unpack, and rebuild them in another
development environment.

• Source files (for example, .c and .cpp files)

• Header files (for example, .h and .hpp files)

• Nonbuild-related files (for example, .dll files required for a final
executable file and .txt informational files)

• MAT-file that contains the build information object (.mat file)

Use this function to relocate files so that they can be recompiled for a specific
target environment, or rebuilt in a development environment in which
MATLAB is not installed.

By default, the function packages the files as a flat folder structure in a zip
file. You can customize the output by specifying property name and value
pairs as previously described.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

packNGo Function Limitations. The following limitations apply to use of
the packNGo function:

19-168

Customize the Post-Code-Generation Build Process

• The function operates on source files only, such as *.c, *.cpp, and *.h
files. The function does not support compile flags, defines, or makefiles.

• Unnecessary files might be included. The function might find additional
files from source paths and include paths recorded in the build information,
even if they are not used.

• packNGo does not package the code generated for MEX targets.

See Also.

• “Package Generated Code at the Command Line” on page 19-196

• “Package Code For Use in Another Development Environment” on page
19-194

updateFilePathsAndExtensions

Purpose. Update files in project build information with missing paths and
file extensions

Syntax.
updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

extensions (optional)
A cell array of character arrays that specifies the extensions (file
types) of files for which to search and include in the update processing.
By default, the function searches for files with a .c extension. The
function checks files and updates paths and extensions based on the
order in which you list the extensions in the cell array. For example,
if you specify {'.c' '.cpp'}, and a folder contains myfile.c and
myfile.cpp, an instance of myfile is updated to myfile.c.

19-169

19 Generating C/C++ Code from MATLAB® Code

Description. Using paths that already exist in a project’s build information,
the updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or file
extension. This function can be particularly useful for

• Maintaining build information for a toolchain that requires the use of file
extensions

• Updating multiple customized instances of build information for a given
project

updateFileSeparator

Purpose. Change file separator used in project’s build information

Syntax.
updateFileSeparator(buildinfo, separator)

Arguments.

buildinfo
Build information stored in RTW.BuildInfo.

separator
A character array that specifies the file separator \ (Windows) or /
(UNIX®) to be applied to all file path specifications.

Description. The updateFileSeparator function changes all instances
of the current file separator (/ or \) in a project’s build information to the
specified file separator.

The default value for the file separator matches the value returned by the
MATLAB command filesep. For makefile based builds, you can override
the default by defining a separator with the MAKEFILE_FILESEP macro in
the template makefile. If the GenerateMakefile parameter is set, the
MATLAB Coder software overrides the default separator and updates the
build information after evaluating the PostCodeGenCommand configuration
parameter.

19-170

Customize the Post-Code-Generation Build Process

Programming a Post-Code-Generation Command
A post-code-generation command is a MATLAB file that typically calls
functions that get data from or add data to the build information object. For
example, you can access the project name in the variable projectName and
the RTW.BuildInfo object in the variable buildInfo. You can program the
command as a script or a function.

If You Program the Command as
a...

Then the...

Script Script can gain access to the project
(top-level function) name and the
build information directly.

Function Function can pass the project
name and the build information as
arguments.

If your post-code-generation command calls user-defined functions, make sure
that the functions are on the MATLAB path. If the build process cannot find a
function that you use in your command, the process fails.

You can call any combination of build information functions to customize
the post-code-generation build. See “Programming and Using a
Post-Code-Generation Command at the Command Line” on page 19-173

Using a Post-Code-Generation Command in Your
Build
After you program a post-code-generation command, you must include this
command in the build processing. You can include the command from the
project settings dialog box or the command line.

Including a Post-Code-Generation Command in the Project
Settings Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

19-171

19 Generating C/C++ Code from MATLAB® Code

2 On this tab, click the More settings link to view the project settings for
the selected output type.

3 In the Project Settings dialog box, click the Custom Code tab.

4 On this tab, set the Post-code-generation command parameter. Close
the dialog box.

How you use the PostCodeGenCommand option depends on whether
you program the command as a script or a function. See “Including a
Post-Code-Generation Command at the Command Line” on page 19-172
and “Including a Post-Code-Generation Command in the Project Settings
Dialog Box.” on page 19-171.

Including a Post-Code-Generation Command at the Command
Line
Set the PostCodeGenCommand option for the code generation
configuration object (coder.MexCodeConfig, coder.CodeConfig or
coder.EmbeddedCodeConfig).

How you use the PostCodeGenCommand option depends on whether
you program the command as a script or a function. See “Including a
Post-Code-Generation Command at the Command Line” on page 19-172 and
“Including a Post-Code-Generation Command in the Project Settings Dialog
Box.” on page 19-171.

Programming the Post-Code-Generation Command as a Script
Set PostCodeGenCommand to the script name.

At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'ScriptName';

Programming the Post-Code-Generation Command as a
Function
Set PostCodeGenCommand to the function signature. When you define the
command as a function, you can specify an arbitrary number of input

19-172

Customize the Post-Code-Generation Build Process

arguments. If you want to access the project name, include projectName
as an argument. If you want to modify or access build information, add
buildInfo as an argument.

At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

Programming and Using a Post-Code-Generation
Command at the Command Line
The following example shows how to program and use a post-code-generation
command as a function. The setbuildargs function takes the build
information object as a parameter, sets up link options, and adds them to
the build information object.

1 Create a post-code-generation command as a function, setbuildargs,
which takes the buildInfo object as a parameter:

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library be included
% in the build

linkFlags = {'-lpthread'};
addLinkFlags(buildInfo, linkFlags);

2 Create a code generation configuration object. Set the PostCodeGenCommand
option to 'setbuildargs(buildInfo)' so that this command is included in
the build processing:

cfg = coder.config('mex');
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

3 Using the -config option, generate a MEX function passing the
configuration object to codegen. For example, for the function foo that has
no input parameters:

codegen -config cfg foo

19-173

19 Generating C/C++ Code from MATLAB® Code

Code Generation Reports

In this section...

“About Code Generation Reports” on page 19-174

“Enable Code Generation Reports” on page 19-177

“View Your MATLAB Code in a Report” on page 19-178

“Viewing Call Stack Information” on page 19-179

“View Generated C/C++ Code in a Report” on page 19-182

“Viewing the Build Summary Information” on page 19-182

“View Error and Warning Messages in a Report” on page 19-183

“Viewing Variables in Your MATLAB Code” on page 19-184

“Viewing Target Build Information” on page 19-190

“Keyboard Shortcuts for the Code Generation Report” on page 19-191

“Report Limitations” on page 19-191

About Code Generation Reports
At code-generation time, MATLAB Coder produces reports to help you debug
your MATLAB code and to verify that your MATLAB code is suitable for
code generation.

Report Generation
If MATLAB Coder detects errors or warnings, the software automatically
produces a code generation report.

Even when there are no errors or warnings, you can also use the option to
request reports.

The report provides links to your MATLAB code and C/C++ code files. It also
provides compile-time type information for the variables and expressions
in your MATLAB code. This information simplifies finding sources of error
messages and aids understanding of type propagation rules.

19-174

Code Generation Reports

Names and Locations of Code Generation Reports
MATLAB Coder produces code generation reports in the following locations.
The top-level html file at each location is index.html.

• For MEX functions:

output_folder
/mex/primary_function_name/html

• For C/C++ executables:

output_folder/exe/primary_function_name/html

• For C/C++ libraries:

output_folder/lib/primary_function_name/html

Note The default output folder is codegen, but you can specify a different
folder. For more information, see “Specify Output File Locations” on page
16-41.

Opening Code Generation Reports

Opening Code Generation Reports in the Project Interface. On the
project Build tab, the Build Results pane provides information about the
most recent build. If the code generation report is enabled or build errors
occur, MATLAB Coder generates a report that provides detailed information
about the most recent build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well
as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists all errors and warnings.

Opening Code Generation Reports at the Command Line. If you specify
the -launchreport option, the code generation report opens automatically.

19-175

19 Generating C/C++ Code from MATLAB® Code

If no build errors occurred, To open the code generation report, in the
MATLAB Command Window, click the View report link.

If build errors occurred, to open the error report, in the MATLAB Command
Window, click the Open error report link.

Description of Code Generation Reports
When you generate code for MATLAB files from a MATLAB Coder project, or
from the command line using the codegen -report option, MATLAB Coder
generates a report. The following example shows a report for a completed
build.

The report provides the following information, as applicable:

19-176

Code Generation Reports

• MATLAB code information, including a list of all functions and classes
and their build status

• Call stack information, providing information on the nesting of function
calls

• Links to generated C/C++ code files

• Summary of build results, including type of target and number of warnings
or errors

• List of all error and warning messages

• List of all variables in your MATLAB code

• Target build log that records compilation and linking activities

Enable Code Generation Reports

How to Enable Code Generation Reports in the Project Settings
Dialog Box

1 On the project Build tab, click the More settings link.

2 In the Project Settings dialog box, click the Debugging tab.

3 On the Debugging tab, check Always create a code generation report.

If you want the code generation or error report to open automatically when
MATLAB Coder finishes building a project, check Automatically launch
a report if one is generated.

How to Enable Code Generation Reports at the Command Line
Use the codegen function -report option. To generate a standalone C/C++
static library and code generation report for a function foo that has no input
parameters, at the MATLAB command line, enter:

codegen -config:lib -report foo

If you want the code generation or error report to open automatically, use the
-launchreport option instead of the -report option.

19-177

19 Generating C/C++ Code from MATLAB® Code

View Your MATLAB Code in a Report
To view your MATLAB code, click the MATLAB code tab. The code
generation report displays the code for the function or class highlighted in the
list on this tab.

The MATLAB code tab provides:

• A list of the MATLAB functions and classes that have been built.
Depending on the build results, the report displays icons next to each
function or class name:

- Errors in function or class.

- Warnings in function or class.

- Completed build, no errors or warnings.

• A filter control. You can use Filter functions and methods to sort your
functions and methods by:

- Size

- Complexity

- Class

Viewing Local Functions
The code generation report annotates the local function with the name of the
parent function in the list of functions on the MATLAB code tab.

For example, if the MATLAB function fcn1 contains the local function
local_fcn1, and fcn2 contains the local function local_fcn2, the report
displays:

fcn1 > local_fcn1
fcn2 > local_fcn2

19-178

Code Generation Reports

Viewing Specializations
If your MATLAB function calls the same function with different types of
inputs, the code generation report numbers each of these specializations
in the list of functions on the MATLAB code tab.

For example, if the function fcn calls the function subfcn with different
types of inputs:

function y = fcn(u) %#codegen
% Specializations
y = y + subfcn(single(u));
y = y + subfcn(double(u));

The code generation report numbers the specializations in the list of functions:

fcn > subfcn > 1
fcn > subfcn > 2

Viewing Extrinsic Functions
The report highlights the extrinsic functions that are supported only within
the MATLAB environment.

Viewing Call Stack Information
The code generation report provides call stack information:

• On the Call stack tab.

• In the list of Calls at the top right of the report.

19-179

19 Generating C/C++ Code from MATLAB® Code

This list shows all the calls from and to the function or method. If a
function is called from more than one function, this list provides details of
each call-site. Otherwise, the list is disabled.

Viewing Call Stack Information on the Call stack Tab
To view call stack information, click the Call stack tab.

The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

For more than one entry-point function, the call stack displays a separate
tree for each entry point. You can easily distinguish between shared and
entry-point specific functions. If you click a shared function, the report
highlights all instances of this function. If you click an entry-point specific
function, the report highlights only that instance.

For example, in the following call stack, ezep1 and ezep2 are entry-point
functions. identity is an entry-point specific function, called only by ezep1.
Functions ezep3 and shared are shared functions.

19-180

Code Generation Reports

����$"�
	��
�����	
��

����$"�
	��
����	�	�
�����	
�

Viewing Call Sites in the Callers List
If a function or method is called from more than one function or method, or if
the function or method calls other functions or methods, the Calls list provides
details of each call site. To navigate between call sites, select a call site from
the Calls list. If the function is not called more than once, this list is disabled.

If you select the entry-point function ezep2 in the call stack, the Calls list
displays the other call-site in ezep1.

19-181

19 Generating C/C++ Code from MATLAB® Code

View Generated C/C++ Code in a Report
To view a list of the generated C/C++ files, click the C-code tab. The code
generation report displays a list of the generated files. Click a file in the
list to view the code in the code pane.

Tracing Generated Code Back to MATLAB Source Code
You can configure codegen to generate C code that includes the MATLAB
source code as comments. In these auto-generated comments, codegen
precedes each line of source code with a traceability tag that provides details
about the location of the source code. For more information, see “Generation
of Traceable Code” on page 19-88.

For code generated with an Embedded Coder license, these traceability tags
are hyperlinks. Click a tag to go the relevant line in the source code in the
MATLAB editor.

Navigating to C/C++ Code Source Files
When viewing C/C++ code in the code pane, click the blue link to the source
file at the top of the pane to open the associated source code file in the
MATLAB editor.

Viewing Type Definitions
The code generation report provides links to the definitions of data types.
When viewing C/C++ code in the code pane, click the blue link for a data
type to see its definition.

Viewing Custom Code
The report displays custom code with color syntax highlighting. To learn
what these colors mean and how to customize color settings, see “Colors in
the MATLAB Editor”.

Viewing the Build Summary Information
To view a summary of the build results, including type of target and number
of errors or warnings, click the Summary tab.

19-182

Code Generation Reports

View Error and Warning Messages in a Report
MATLAB Coder automatically reports errors and warnings. If errors occur
during the build, MATLAB Coder does not generate code. The report lists the
messages in the order that MATLAB Coder detects them. It is a best practice
to address the first message in the list, because often subsequent errors and
warnings are related to the first message. If the build produces warnings, but
no errors, MATLAB Coder does generate code.

The code generation report provides information about errors and warnings
by:

• Listing all errors and warnings on the All Messages tab. The report lists
these messages in chronological order.

• Highlighting all errors and warnings on the MATLAB code pane.

• If applicable, recording compilation and linking issues on the Target
Build Log tab. If compilation or linking errors occur, the code generation
report opens with the Target Build Log tab selected so that you can view
the build log.

Viewing Errors and Warnings in the All Messages Tab
If errors or warnings occur during the build, click the All Messages tab to
view a complete list of these messages. The code generation report marks
messages:

Error

Warning

To locate the incorrect line of code for an error or warning in the list, click
the message in the list. The code generation report highlights errors in the
list and MATLAB code in red and highlights warnings in orange. Click the
blue line number next to the incorrect line of code in the MATLAB code pane
to go to the error in the source file.

Note You can fix errors only in the source file.

19-183

19 Generating C/C++ Code from MATLAB® Code

Viewing Error and Warning Information in Your MATLAB Code
If errors or warnings occur during the build, the code generation report
underlines them in your MATLAB code. The report underlines errors in red
and underlines warnings in orange. To learn more about a particular error or
warning, place your pointer over the underlined text.

Viewing Compilation and Linking Errors and Warnings
If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

Viewing Variables in Your MATLAB Code
The report provides compile-time type information for the variables and
expressions in your MATLAB code, including name, type, size, complexity,
and class. It also provides type information for fixed-point data types,
including word length and fraction length. You can use this type information
to find sources of error messages and to understand type propagation rules.

You can view information about the variables in your MATLAB code:

• On the Variables tab, view the list

• In your MATLAB code, place your pointer over the variable name

Viewing Variables in the Variables Tab
To view a list of all the variables in your MATLAB function, click the
Variables tab. The report displays a complete list of variables in the order
that they appear in the function selected on theMATLAB code tab. Clicking
a variable in the list highlights all instances of that variable, and scrolls the
MATLAB code pane so that you can view the first instance.

The report provides the following information about each variable, as
applicable.

• Order

• Name

• Type

19-184

Code Generation Reports

• Size

• Complexity

• Class

• DataTypeMode (DT mode) — for fixed-point data types only. For more
information, see “DataTypeMode”.

• Signed — sign information for built-in data types, signedness information
for fixed-point data types

• Word length (WL) — for fixed-point data types only

• Fraction length (FL) — for fixed-point data types only

Note For more information on viewing fixed-point data types, see “Create
and Use Fixed-Point Code Generation Reports”.

It only displays a column if at least one variable in the code has information
in that column. For example, if the code does not contain any fixed-point data
types, the report does not display the DT mode, WL or FL columns.

Sorting Variables in the Variables Tab. By default, the report lists the
variables in the order that they appear in the selected function.

You can sort the variables by clicking the column headings on the Variables
tab. To sort the variables by multiple columns, hold down the Shift key when
clicking the column headings.

To restore the list to the original order, click the Order column heading.

Viewing Structures on the Variables Tab. You can expand structures
listed on the Variables tab to display the field properties.

19-185

19 Generating C/C++ Code from MATLAB® Code

If you sort the variables by type, size, complexity or class, a structure and its
fields might not appear sequentially in the list. To restore the list to the
original order, click the Order column heading.

Viewing Information About Variable-Size Arrays in the Variables
Tab. For variable-size arrays, the Size field includes information on the
computed maximum size of the array. The size of each array dimension that
varies is prefixed with a colon :.

In the following report, variable A is variable-size. Its maximum computed
size is 1×100.

If the code generation software cannot compute the maximum size of a
variable-size array, the report displays the size as :?.

19-186

Code Generation Reports

If you declare a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but the
size of its dimensions do not change during execution.

For more information on how to use the size information for variable-sized
arrays, see “Variable-Size Data Definition for Code Generation” on page 7-3.

Viewing Renamed Variables in the Variables Tab. If your MATLAB
function reuses a variable with different size, type, or complexity, the code
generation software attempts to create separate, uniquely named variables
in the generated code. For more information, see “Reuse the Same Variable
with Different Properties” on page 5-11. The report numbers the renamed
variables in the list on the Variables tab. When you place your pointer over
a renamed variable, the report highlights only the instances of this variable
that share the same data type, size, and complexity.

For example, suppose your code uses the variable t in a for-loop to hold a
scalar double, and reuses it outside the for-loop to hold a 5x5 matrix. The
report displays two variables, t>1 and t>2 in the list on the Variables tab.

19-187

19 Generating C/C++ Code from MATLAB® Code

Viewing Information About Variables and Expressions in Your
MATLAB Function Code
To view information about a particular variable or expression in your
MATLAB function code, on the MATLAB code pane, place your pointer
over the variable name or expression. The report highlights variables and
expressions in different colors:

Green, when the variable has data type information at this location
in the code.

For variable-size arrays, the Size field includes information on the computed
maximum size of the array. The size of each array dimension that varies is
prefixed with a colon :. Here the array A is variable-sized with a maximum
computed size of 1 x 100.

19-188

Code Generation Reports

Pink, when the variable has no data type information.

Purple, information about expressions. You can also view information
about expressions in your MATLAB code. On the MATLAB code pane, place
your pointer over an expression . The report highlights expressions in purple
and provides more detailed information.

Red, when there is error information for an expression. If the code
generation software cannot compute the maximum size of a variable-size
array, the report underlines the variable name and provides error information.

19-189

19 Generating C/C++ Code from MATLAB® Code

Viewing Target Build Information
If the build completes, MATLAB Coder provides target build information on
the Target Build Log tab, including:

• Build folder

Clicking this link changes the MATLAB current folder to the build folder.

• Make wrapper

The batch file name that MATLAB Coder used for this build.

• Build log

If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

19-190

Code Generation Reports

Keyboard Shortcuts for the Code Generation Report
You can use the following keyboard shortcuts to navigate between the
different panes in the code generation report. Once you have selected a pane,
use the Tab key to advance through data in that pane.

To select ... Use...

MATLAB code Tab Ctrl+m

Call stack Tab Ctrl+k

C code Tab Ctrl+c

Code Pane Ctrl+w

Summary Tab Ctrl+s

All Messages Tab Ctrl+a

Variables Tab Ctrl+v

Target Build Log Tab Ctrl+t

Report Limitations
The report displays information about the variables and expressions in your
MATLAB code with the following limitations:

varargin and varargout

The report does not support varargin and varargout arrays.

Loop Unrolling

The report does not display full information for unrolled loops. It displays
data types of one arbitrary iteration.

Dead Code

The report does not display information about any dead code.

19-191

19 Generating C/C++ Code from MATLAB® Code

Structures

The report does not provide complete information about structures.

• On theMATLAB code pane, the report does not provide information about
all structure fields in the struct() constructor.

• On the MATLAB code pane, if a structure has a nonscalar field, and an
expression accesses an element of this field, the report does not provide
information for the field.

Column Headings on Variables Tab

If you scroll through the list of variables, the report does not display the
column headings on the Variables tab.

Multiline Matrices

On the MATLAB code pane, the report does not support selection of
multiline matrices. It supports only selection of individual lines at a time.
For example, if you place your pointer over the following matrix, you cannot
select the entire matrix.

out1 = [1 2 3;
4 5 6];

The report does support selection of single line matrices.

out1 = [1 2 3; 4 5 6];

19-192

Troubleshooting

Troubleshooting

Run-time Stack Overflow
If your C compiler reports a run-time stack overflow, set the value of the
maximum stack usage parameter to be less than the available stack size.
In a project, on the Project Settings dialog box Memory tab, set the
Stack usage max parameter. For command-line configuration objects
(coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig),
set the StackUsageMax parameter.

19-193

19 Generating C/C++ Code from MATLAB® Code

Package Code For Use in Another Development
Environment

In this section...

“When to Package Code” on page 19-194

“Package Generated Code in a Project” on page 19-194

“Package Generated Code at the Command Line” on page 19-196

When to Package Code
If you need to relocate the generated code files to another development
environment, such as a system or an integrated development environment
(IDE) that does not include MATLAB, use either the packNGo function at the
command line or the package option in a project. The files are packaged in a
compressed file that you can relocate and unpack using a standard zip utility.

See “Package Generated Code at the Command Line” on page 19-196 and
“Package Generated Code in a Project” on page 19-194.

Package Generated Code in a Project
This example shows how to package generated code into a zip file for
relocation using the Package option in a MATLAB Coder project.

1 In a local writable folder, for example c:\work, write a function foo that
takes two double inputs.

function y = foo(A,B)
y = A + B;

end

2 In the same folder, create a new project.

coder -new package.prj

3 Add the file foo as an entry-point to the project.

4 Specify that inputs A and B are scalar doubles.

19-194

Package Code For Use in Another Development Environment

5 On the project Build tab, set Output type to build a static or dynamic
library or executable. You cannot package the code generated for MEX
targets.

6 At the top of the project, click Package.

Because you have not already built the project, MATLAB Coder builds
the project.

7 When prompted, save the package file using the default path and file
name. By default, MATLAB Coder derives the name of the package file
from the project name and saves it in the current working folder. This zip
file contains all the C code and header files required for relocation. It does
not contain compile flags, defines, or makefiles.

8 Inspect the contents of package_pkg.zip in your working folder to verify
that it is ready for relocation to the destination system. Depending on the
zip tool you use you might be able to open and inspect the file without
unpacking it.

You can now relocate the resulting zip file to the destination development
environment and unpack the file.

19-195

19 Generating C/C++ Code from MATLAB® Code

Package Generated Code at the Command Line
This example shows how to package generated code into a zip file for
relocation using the packNGo function at the command line.

1 In a local writable folder, for example c:\work, write a function foo that
takes two double inputs.

function y = foo(A,B)
y = A + B;

end

2 Generate a static library for function foo. (packNGo does not package
MEX function code.)

codegen -report -config:lib foo -args {0,0}

codegen generates code in the c:\work\codegen\lib\foo folder.

3 Load the buildInfo object.

load('c:\work\codegen\lib\foo\buildInfo.mat')

4 Create the zip file.

packNGo(buildInfo, 'fileName', 'foo.zip');

Alternatively, use the notation

buildInfo.packNGo('fileName', 'foo.zip');

The packNGo function creates a zip file, foo.zip, in the current working
folder. This zip file contains all the C code and header files required for
relocation. It does not contain compile flags, defines, or makefiles.

In this example, you specify only the file name. Optionally, you can specify
additional packaging options.

19-196

Package Code For Use in Another Development Environment

To... Specify...

Change the structure
of the file packaging to
hierarchical

packNGo(buildInfo, {'packType'
'hierarchical'});

Change the structure
of the file packaging to
hierarchical and rename
the primary zip file

packNGo(buildInfo, {'packType'
'hierarchical'...
'fileName' 'zippedsrcs'});

Include all header files
found on the include path
(rather than the minimal
header files required to
build the code) in the zip file

packNGo(buildInfo,
{'minimalHeaders' false});

For more information, see “packNGo” on page 19-167 and “Choose a
Structure for the Zip File” on page 19-197.

5 Inspect the contents of foo.zip to verify that it is ready for relocation to the
destination system. Depending on the zip tool you use you might be able to
open and inspect the file without unpacking it. If you need to unpack the
file and you packaged the generated code files as a hierarchical structure,
you will need to unpack the primary and secondary zip files. When you
unpack the secondary zip files, relative paths of all files are preserved.

You can now relocate the resulting zip file to the destination development
environment and unpack the file.

Choose a Structure for the Zip File
Before you generate and package the files, decide whether you want the files
to be packaged in a flat or hierarchical folder structure. By default, the
packNGo function packages the files in a single, flat folder structure. This
approach is the simplest and might be the optimal choice.

19-197

19 Generating C/C++ Code from MATLAB® Code

If... Then Use a...

You are relocating files to an IDE
that does not use the generated
makefile, or the code is not
dependent on the relative location of
required static files

Single, flat folder structure

The target development environment
must maintain the folder structure
of the source environment because
it uses the generated makefile, or
the code is dependent on the relative
location of files

Hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels
of zip files. There is a primary zip file, which in turn contains the following
secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree

• sDirFiles.zip— files in and under your build folder where you initiated
code generation

• otherFiles.zip — required files not in the matlabroot or start folder
trees

Paths for the secondary zip files are relative to the root folder of the primary
zip file, maintaining the source development folder structure.

19-198

20

Deploying Generated Code

• “Call a C Static Library Function from C Code” on page 20-2

• “Call a C/C++ Static Library Function from MATLAB Code” on page 20-4

• “Call Generated C/C++ Functions” on page 20-6

• “Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual
Studio® Project” on page 20-9

• “Custom C/C++ Code Integration” on page 20-12

20 Deploying Generated Code

Call a C Static Library Function from C Code
This example shows how to call a generated C library function from C code. It
uses the C static library function absval described in “Call a C/C++ Static
Library Function from MATLAB Code” on page 20-4.

1 Write a main function in C that does the following:

• Includes the generated header file, which contains the function
prototypes for the library function.

• Calls the initialize function before calling the library function for the
first time.

• Calls the terminate function after calling the library function for the
last time.

Here is an example of a C main function that calls the library function
absval:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "absval.h"

int main(int argc, char *argv[])
{

absval_initialize();

printf("absval(-2.75)=%g\n", absval(-2.75));

absval_terminate();

return 0;
}

2 Configure your target to integrate this custom C main function with your
generated code, as described in “Custom C/C++ Code Integration” on page
20-12.

20-2

Call a C Static Library Function from C Code

For example, you can define a configuration object that points to the
custom C code:

a Create a configuration object. At the MATLAB prompt, enter:

cfg = coder.config('exe');

b Set custom code properties on the configuration object, as in these
example commands:

cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable. Use the -args option to specify that the input
is a real, scalar double. At the MATLAB prompt, enter:

codegen -config cfg absval -args {0}

4 Call the executable. For example:

absval(-2.75)

20-3

20 Deploying Generated Code

Call a C/C++ Static Library Function from MATLAB Code
This example shows how to call a C/C++ library function from MATLAB code
that is suitable for code generation.

Suppose you have a MATLAB file absval.m that contains the following
function:

function y = absval(u) %#codegen
y = abs(u);

end

To generate a C static library function and call it from MATLAB code:

1 Generate the C library for absval.m.

codegen -config:lib absval -args {0.0}

Here are key points about this command:

• The -config:lib option instructs MATLAB Coder to generate absval
as a C static library function.

The default target language is C. To change the target language to C++,
see “Specify a Language for Code Generation” on page 19-24.

• MATLAB Coder creates the library absval.lib (or absval.a
on Linus Torvalds’ Linux) and header file absval.h in the
folder /emcprj/rtwlib/absval. It also generates the functions
absval_initialize and absval_terminate in the C library.

• The -args option specifies the class, size, and complexity of the primary
function input u by example, as described in “Define Input Properties by
Example at the Command Line” on page 19-43.

2 Write a MATLAB function to call the generated library:

%#codegen
function y = callabsval

% Call the initialize function before
% calling the C function for the first time
coder.ceval('absval_initialize');

20-4

Call a C/C++ Static Library Function from MATLAB® Code

y = -2.75;
y = coder.ceval('absval',y);

% Call the terminate function after
% calling the C function for the last time
coder.ceval('absval_terminate');

The MATLAB function callabsval uses the interface coder.ceval
to call the generated C functions absval_initialize, absval, and
absval_terminate. You must use this function to call C functions
from generated code. For more information, see “Call Generated C/C++
Functions” on page 20-6.

3 Convert the code in callabsval.m to a MEX function so that you can call
the C library function absval directly from the MATLAB prompt.

a Generate the MEX function using codegen as follows:

• Create a code generation configuration object for a MEX function:

cfg = coder.config

• On Microsoft Windows platforms, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.lib
codegen/lib/absval/absval.h

By default, this command creates, in the current folder, a MEX
function named callabsval_mex

On the Linus Torvalds’ Linux platform, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.a
codegen/lib/absval/absval.h

b At the MATLAB prompt, call the C library by running the MEX function.
For example, on Windows:

callabsval_mex

20-5

20 Deploying Generated Code

Call Generated C/C++ Functions

In this section...

“Conventions for Calling Functions in Generated Code” on page 20-6

“How to Call C/C++ Functions from MATLAB Code” on page 20-6

“Calling Initialize and Terminate Functions” on page 20-7

“Calling C/C++ Functions with Multiple Outputs” on page 20-8

“Calling C/C++ Functions that Return Arrays” on page 20-8

Conventions for Calling Functions in Generated Code
When generating code, MATLAB Coder uses the following calling conventions:

• Passes arrays by reference as inputs.

• Returns arrays by reference as outputs.

• Unless you optimize your code by using the same variable as both input
and output, passes scalars by value as inputs. In that case, MATLAB Coder
passes the scalar by reference.

• Returns scalars by value for single-output functions.

• Returns scalars by reference:

- For functions with multiple outputs.

- When you use the same variable as both input and output.

For more information about optimizing your code by using the same variable
as both input and output, see “Eliminate Redundant Copies of Function
Inputs (A=foo(A))” on page 19-66.

How to Call C/C++ Functions from MATLAB Code
You can call the C/C++ functions generated for libraries as custom C/C++ code
from MATLAB functions that are suitable for code generation. For static
libraries, you must use the coder.ceval function to wrap the function calls,
as in this example:

20-6

Call Generated C/C++ Functions

function y = callmyCFunction %#codegen
y = 1.5;
y = coder.ceval('myCFunction',y);

end

Here, the MATLAB function callmyCFunction calls the custom C function
myCFunction, which takes one input argument.

For dynamically-linked libraries, you can also use coder.ceval.

There are additional requirements for calling C/C++ functions from the
MATLAB code in the following situations:

• You want to call generated C/C++ libraries or executables from a MATLAB
function. Call housekeeping functions generated by MATLAB Coder, as
described in “Calling Initialize and Terminate Functions” on page 20-7.

• You want to call C/C++ functions that are generated from MATLAB
functions that have more than one output, as described in “Calling C/C++
Functions with Multiple Outputs” on page 20-8.

• You want to call C/C++ functions that are generated from MATLAB
functions that return arrays, as described in “Calling C/C++ Functions
that Return Arrays” on page 20-8.

Calling Initialize and Terminate Functions
When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates two housekeeping
functions that you must call along with the C/C++ function.

Housekeeping Function When to Call

primary_function_name_initialize Before you call your C/C++
executable or library function
for the first time

primary_function_name_terminate After you call your C/C++
executable or library function
for the last time

20-7

20 Deploying Generated Code

From C/C++ code, you can call these functions directly. However, to call them
from MATLAB code that is suitable for code generation, you must use the
coder.ceval function. coder.ceval is a MATLAB Coder function, but is not
supported by the native MATLAB language. Therefore, if your MATLAB code
uses this function, use coder.target to disable these calls in MATLAB and
replace them with equivalent functions.

Calling C/C++ Functions with Multiple Outputs
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that have multiple outputs, the generated C/C++ code cannot return multiple
outputs directly because the C/C++ language does not support multiple return
values. Instead, you can achieve the effect of returning multiple outputs from
your C/C++ function by using coder.wref with coder.ceval.

See Also

• “Call Generated C/C++ Functions” on page 20-6

• coder.wref function reference information

• coder.ceval function reference information

Calling C/C++ Functions that Return Arrays
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that return values as arrays, the generated code cannot return arrays by
value because the C/C++ language is limited to returning single, scalar
values. Instead, you can return arrays from your C/C++ function by reference
as pointers by using coder.wref with coder.ceval.

See Also

• “Call Generated C/C++ Functions” on page 20-6

• coder.wref function reference information

• coder.ceval function reference information

20-8

Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

Use a MATLAB Coder Dynamic Library in a Simple
Microsoft Visual Studio Project

These steps outline how to create and configure a simple Microsoft Visual
Studio® Win32 Console Application project to call a dynamic library (DLL)
that was generated by MATLAB Coder. This procedure provides information
on how to do this in Microsoft Visual Studio 2008, the steps might differ in
other versions of Microsoft Visual Studio.

1 Create a MATLAB function foo and save it as foo.m in a local writable
folder, for example, c:\dll_test.

function c = foo(a) %#codegen
c = sqrt(a);

end

2 Generate a DLL for the MATLAB function foo, using the -args option to
specify that the input a is a real double.

codegen -report -config:dll foo -args {0}

On Microsoft Windows systems, codegen generates a C dynamic library,
foo.dll, and supporting files, in the default folder, codegen/dll/foo.

3 In Microsoft Visual Studio, create an empty Win32 Console Application
project.

4 Verify that the project configuration specifies architecture that matches
your computer. By default, MATLAB Coder builds a DLL for the platform
that you are working on, but Microsoft Visual Studio builds for Win32.

In Microsoft Visual Studio 2008:

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution platform to
match your platform.

5 Configure the project to use the release version of the C run-time library.
By default, the Microsoft Visual Studio project uses the debug version of
the C run-time library, but the DLL generated by MATLAB Coder uses the
release version. For example, in Microsoft Visual Studio 2008:

20-9

20 Deploying Generated Code

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution configuration
to Release.

6 Create a main file that calls foo.dll. The main function must:

• Include the generated header file, which contains the function prototypes
for the library function.

• Call the initialize function before calling the library function for the
first time.

• Call the terminate function after calling the library function for the
last time.

For example:

#include "foo.h"
#include "foo_initialize.h"
#include "foo_terminate.h"
#include <stdio.h>

int main()
{

foo_initialize();
printf("%f\n", foo(25));
foo_terminate();
getchar();
return 0;

}

7 Add the main file to the project.

8 In the project, add the folder containing the generated header file to the
list of additional include directories. For example, in Microsoft Visual
Studio 2008:

a Right-click the project name and select Properties.

b Under C/C++ > General, add the folder c:\dll_test\codegen\dll\foo
to Additional Include Directories.

20-10

Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

9 Add the folder containing the .lib file (by default, this is the folder
containing the .dll) to the list of additional library directories. For
example, in Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > General, add the folder
c:\dll_test\codegen\dll\foo to Additional Library Directories.

10 Add the .lib file name to the list of additional libraries. For example, in
Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > Input, add foo.lib to Additional Dependencies.

You are now ready to build your project.

Note To run the application, you must either add the folder containing
the generated DLL to your path or run from the folder that contains
the DLL.

20-11

20 Deploying Generated Code

Custom C/C++ Code Integration

In this section...

“About Custom C/C++ Code Integration with MATLAB® Coder™” on page
20-12

“Specifying Custom C/C++ Files in the Project Settings Dialog Box” on
page 20-12

“Specifying Custom C/C++ Files at the Command Line” on page 20-13

“Specifying Custom C/C++ Files with Configuration Objects” on page 20-13

About Custom C/C++ Code Integration with MATLAB
Coder
You integrate custom C/C++ code with generated C/C++ code by specifying the
locations of your external source files, header files, and libraries to MATLAB
Coder. You can specify custom C/C++ files from the project settings dialog
box, the command line, or with configuration objects.

Specifying Custom C/C++ Files in the Project Settings
Dialog Box

1 On the project Build tab, click the More settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, under Custom C-code to include in
generated files, specify Source file and Header file. Source file
specifies the code to appear at the top of generated C/C++ source files.
Header file specifies the code to appear at the top of generated header files.

Custom Code Property Description

Under Additional files and directories to be built, provide an absolute path or a path
relative to the project folder.

Include directories Specifies a list of folders that contain custom header, source,
object, or library files. Separate list items with a semicolon.

20-12

Custom C/C++ Code Integration

Custom Code Property Description

Source files Specifies additional custom C/C++ files to be compiled with the
MATLAB file. Separate list items with a semicolon.

Libraries Specifies the names of object or library files to be linked with
the generated code. Separate list items with a semicolon.

Under Custom C-code to include in generated files

Source file Specifies code to appear at the top of generated C/C++ source
files.

Header file Specifies custom code to appear at the top of generated header
files

Specifying Custom C/C++ Files at the Command Line
When you compile MATLAB function with MATLAB Coder, you can specify
custom C/C++ files — such as source, header, and library files — on the
command line along with your MATLAB file. For example, suppose you
want to generate an embeddable C code executable that integrates a custom
C function myCfcn with a MATLAB function myMfcn that has no input
parameters. The custom source and header files for myCfcn reside in the
folder C:\custom. You can use the following command to generate the code:

codegen C:\custom\myCfcn.c C:\custom\myCfcn.h myMfcn

Specifying Custom C/C++ Files with Configuration
Objects
You can specify custom C/C++ files by setting custom code properties on
configuration objects.

1 Define a configuration object, as described in “Creating Configuration
Objects” on page 19-31.

For example:

cc = coder.config('lib');

2 Set one or more of the custom code properties.

20-13

20 Deploying Generated Code

Custom Code Property Description

CustomInclude Specifies a list of folders that contain custom header, source,
object, or library files.

Note If your folder path name contains spaces, you must
enclose it in double quotes:

cc.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomSource Specifies additional custom C/C++ files to be compiled with
the MATLAB file.

CustomLibrary Specifies the names of object or library files to be linked with
the generated code.

CustomSourceCode Specifies code to insert at the top of each generated C/C++
source file.

CustomHeaderCode Specifies custom code to insert at the top of each generated
C/C++ header file.

For example:

cc.CustomInclude = 'C:\custom\src C:\custom\lib';
cc.CustomSource = 'cfunction.c';
cc.CustomLibrary = 'chelper.obj clibrary.lib';
cc.CustomSourceCode = '#include "cgfunction.h"';

3 Compile the MATLAB code specifying the code generation configuration
object.

Note If you generate code for a function that has input parameters, you
must specify the inputs. For more information, see “Primary Function
Input Specification” on page 19-38.

codegen -config cc myFunc

20-14

Custom C/C++ Code Integration

4 Call custom C/C++ functions.

From... Call...

C/C++ source code Custom C/C++ functions directly

MATLAB code, compiled on the
MATLAB Coder path

Custom C/C++ functions using
coder.ceval.

For example, from MATLAB code:

...
y = 2.5;
y = coder.ceval('myFunc',y);
...

See Also

• “Call Generated C/C++ Functions” on page 20-6

20-15

20 Deploying Generated Code

20-16

21

Accelerating MATLAB
Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 21-2

• “Edge Detection on Images” on page 21-4

• “Accelerate MATLAB Algorithms” on page 21-11

• “Modifying MATLAB Code for Acceleration” on page 21-12

• “Accelerate MATLAB Algorithms with the Basic Linear Algebra
Subprograms (BLAS) Library” on page 21-18

• “Control Run-Time Checks” on page 21-21

• “Acceleration of MATLAB Algorithms Using Parallel for-loops (parfor)” on
page 21-24

• “Reduction Assignments in parfor-loops” on page 21-34

• “Classification of Variables in parfor-loops” on page 21-36

• “Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor)” on
page 21-47

• “Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor)
Specifying the Maximum Number of Threads” on page 21-48

• “Troubleshooting parfor-loops” on page 21-49

• “Accelerating Simulation of Bouncing Balls” on page 21-51

21 Accelerating MATLAB® Algorithms

Workflow for Accelerating MATLAB Algorithms

21-2

Workflow for Accelerating MATLAB® Algorithms

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Modifying MATLAB Code for Acceleration” on page 21-12

• “Code Acceleration and Code Generation from MATLAB for Fixed-Point
Algorithms”

21-3

21 Accelerating MATLAB® Algorithms

Edge Detection on Images
This example shows how to generate a standalone C library from MATLAB
code that implements a simple Sobel filter that performs edge detection on
images. The example also shows how to generate and test a MEX function
in MATLAB prior to generating C code to verify that the MATLAB code is
suitable for code generation.

Prerequisites

To run this example, you must install a C compiler and set it up using the ’mex
-setup’ command. For more information, see Setting Up Your C Compiler.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will only contain the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), you should change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_edge_detection');

About the ’sobel’ Function

The sobel.m function takes an image (represented as a double matrix) and
a threshold value and returns an image with the edges detected (based on
the threshold value).

type sobel

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.
function edgeImage = sobel(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

21-4

Edge Detection on Images

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Generate the MEX Function

Generate a MEX function using the ’codegen’ command.

codegen sobel

Before generating C code, you should first test the MEX function in MATLAB
to ensure that it is functionally equivalent to the original MATLAB code and
that no run-time errors occur. By default, ’codegen’ generates a MEX function
named ’sobel_mex’ in the current folder. This allows you to test the MATLAB
code and MEX function and compare the results.

Read in the Original Image

Use the standard ’imread’ command.

im = imread('hello.jpg');
image(im);

21-5

21 Accelerating MATLAB® Algorithms

Convert Image to a Grayscale Version

Convert the color image (shown above) to an equivalent grayscale image with
normalized values (0.0 for black, 1.0 for white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 *

Run the MEX Function (The Sobel Filter)

Pass the normalized image and a threshold value.

edgeIm = sobel_mex(gray, 0.7);

Display the Result

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

21-6

Edge Detection on Images

Generate Standalone C Code

codegen -config coder.config('lib') sobel

Using ’codegen’ with the ’-config coder.config(’lib’)’ option produces a
standalone C library. By default, the code generated for the library is in the
folder codegen/lib/sobel/

Inspect the Generated Function

type codegen/lib/sobel/sobel.c

/*
* sobel.c
*
* Code generation for function 'sobel'
*
* C source code generated on: Tue Jul 24 18:43:47 2012
*

21-7

21 Accelerating MATLAB® Algorithms

*/

/* Include files */
#include "rt_nonfinite.h"
#include "sobel.h"
#include "sobel_emxutil.h"
#include "sqrt.h"
#include "conv2.h"

/* Type Definitions */

/* Named Constants */

/* Variable Declarations */

/* Variable Definitions */

/* Function Declarations */
static real_T rt_roundd_snf(real_T u);

/* Function Definitions */
static real_T rt_roundd_snf(real_T u)
{

real_T y;
if (fabs(u) < 4.503599627370496E+15) {

if (u >= 0.5) {
y = floor(u + 0.5);

} else if (u > -0.5) {
y = -0.0;

} else {
y = ceil(u - 0.5);

}
} else {

y = u;
}

return y;
}

void sobel(const emxArray_real_T *originalImage, real_T threshold,

21-8

Edge Detection on Images

emxArray_uint8_T *edgeImage)
{

emxArray_real_T *H;
emxArray_real_T *V;
int32_T b_H;
int32_T c_H;
emxInit_real_T(&H, 2);
emxInit_real_T(&V, 2);

/* edgeImage = sobel(originalImage, threshold) */
/* Sobel edge detection. Given a normalized image (with double values) *
/* return an image where the edges are detected w.r.t. threshold value.
conv2(originalImage, H);
b_conv2(originalImage, V);
b_H = H->size[0] * H->size[1];
H->size[0] = H->size[0];
H->size[1] = H->size[1];
emxEnsureCapacity((emxArray__common *)H, b_H, (int32_T)sizeof(real_T));
b_H = H->size[0];
c_H = H->size[1];
c_H *= b_H;
for (b_H = 0; b_H < c_H; b_H++) {

H->data[b_H] = H->data[b_H] * H->data[b_H] + V->data[b_H] * V->data[b_H
}

emxFree_real_T(&V);
b_sqrt(H);
b_H = edgeImage->size[0] * edgeImage->size[1];
edgeImage->size[0] = H->size[0];
edgeImage->size[1] = H->size[1];
emxEnsureCapacity((emxArray__common *)edgeImage, b_H, (int32_T)sizeof(uin
c_H = H->size[0] * H->size[1];
for (b_H = 0; b_H < c_H; b_H++) {

edgeImage->data[b_H] = (uint8_T)rt_roundd_snf((real_T)(H->data[b_H] >
threshold) * 255.0);

}

emxFree_real_T(&H);
}

21-9

21 Accelerating MATLAB® Algorithms

/* End of code generation (sobel.c) */

Cleanup

Remove files and return to original folder

Run Command: Cleanup

cleanup

21-10

Accelerate MATLAB® Algorithms

Accelerate MATLAB Algorithms
For many applications, you can generate MEX functions to accelerate
MATLAB algorithms. If you have a Fixed-Point Toolbox license, you can
generate MEX functions to accelerate fixed-point MATLAB algorithms. After
generating a MEX function, test it in MATLAB to verify that its operation is
functionally equivalent to the original MATLAB algorithm. Then compare the
speed of execution of the MEX function with that of the MATLAB algorithm.
If the MEX function speed is not sufficiently fast, you might improve it using
one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate
high performance code.

Note The default MATLAB compiler for Windows 32–bit platforms, lcc,
is designed to generate code quickly. It is not designed to generate high
performance code.

• “Modifying MATLAB Code for Acceleration” on page 21-12

• “Accelerate MATLAB Algorithms with the Basic Linear Algebra
Subprograms (BLAS) Library” on page 21-18

• “Control Run-Time Checks” on page 21-21

21-11

21 Accelerating MATLAB® Algorithms

Modifying MATLAB Code for Acceleration

In this section...

“How to Modify Your MATLAB Code for Acceleration” on page 21-12

“Unroll for-loops” on page 21-12

“Inline Code” on page 21-14

“Eliminate Redundant Copies of Function Inputs (A=foo(A))” on page 21-15

How to Modify Your MATLAB Code for Acceleration
You might improve the efficiency of the generated code using one of the
following optimizations:

• “Unroll for-loops” on page 19-63

• “Inline Code” on page 19-65

• “Eliminate Redundant Copies of Function Inputs (A=foo(A))” on page 19-66

Unroll for-loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant. By unrolling short loops with
known bounds at compile time, MATLAB generates highly optimized code
with no branches.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limiting Copying the Body of a for-loop in Generated Code
To limit the number of times to copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

21-12

Modifying MATLAB® Code for Acceleration

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins
for i = coder.unroll(1:2:n, dounroll)

if (i > 2) && (i < n-2)
y(i) = rand();

end;
end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C library
code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void m_getrand(real_T y[8])
{

int32_T i0;
for(i0 = 0; i0 < 8; i0++) {

y[i0] = 0.0;

21-13

21 Accelerating MATLAB® Algorithms

}
/* Loop body begins */
y[2] = m_rand();
y[4] = m_rand();
/* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

static void m_b_getrand(real_T y[50])
{

int32_T i;
for(i = 0; i < 50; i++) {

y[i] = 0.0;
}
/* Loop body begins */
for(i = 0; i < 50; i += 2) {

if((i + 1 > 2) && (i + 1 < 48)) {
y[i] = m_rand();

}
}
/* Loop body ends */

}

Inline Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

Preventing Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

21-14

Modifying MATLAB® Code for Acceleration

Using Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.
% Prohibit inlining to reduce code size.

coder.inline('never');
end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Eliminate Redundant Copies of Function Inputs
(A=foo(A))
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by

21-15

21 Accelerating MATLAB® Algorithms

reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)
{

return A * B;
}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen

21-16

Modifying MATLAB® Code for Acceleration

x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place
y2=[x2,x2];

end

You can modify this code to eliminate redundant copies. The changes are
highlighted in bold.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

21-17

21 Accelerating MATLAB® Algorithms

Accelerate MATLAB Algorithms with the Basic Linear
Algebra Subprograms (BLAS) Library

In this section...

“How MATLAB Uses the BLAS Library for MEX Code Generation” on
page 21-18

“How to Use the BLAS Library for C/C++ Code Generation” on page 21-18

“When to Disable BLAS Library Support” on page 21-19

“How to Disable BLAS Library Support” on page 21-19

“Supported Compilers” on page 21-20

How MATLAB Uses the BLAS Library for MEX Code
Generation
The Basic Linear Algebra Subprograms (BLAS) Library is a library of
external linear algebra routines optimized for fast computation of low-level
matrix operations. By default, MATLAB functions call BLAS library routines
to accelerate MEX function execution, except in these cases:

• Your C/C++ compiler does not support the BLAS library.

• The size of the matrix is below a minimum threshold.

MATLAB for code generation uses a heuristic to evaluate matrix size
against the overhead of calling an external library.

How to Use the BLAS Library for C/C++ Code
Generation
If you have an Embedded Coder license, you can set up MATLAB Coder to
use a Code Replacement Library to map the following operations to a BLAS
Subroutine:

• Matrix multiplication

• Matrix multiplication with transpose on single or both inputs

• Matrix multiplication with Hermitian operation on single or both inputs

21-18

Accelerate MATLAB® Algorithms with the Basic Linear Algebra Subprograms (BLAS) Library

To run an example that shows you how to do this, at the command line, enter:

showdemo('coderdemo_crl')

Note Requires an Embedded Coder license.

When to Disable BLAS Library Support
Consider disabling BLAS library support for MATLAB functions when:

• You are executing code on a 64-bit platform and the number of elements
in a matrix exceeds 32 bits.

MATLAB Coder automatically truncates the matrix size to 32 bits.

• Your platform does not provide a robust implementation of BLAS routines.

How to Disable BLAS Library Support
MATLAB Coder software enables BLAS library support by default. However,
you can disable this feature explicitly from the project settings dialog box, the
command line, or a MEX configuration dialog box.

Disabling BLAS Library Support in the Project Settings Dialog
Box
1 On the MATLAB Coder project Build tab, click More settings.

2 On the Project Settings dialog box All Settings tab, set Enable BLAS
library if possible to No.

Disabling BLAS Library Support at the Command Line

1 In the MATLAB workspace, define the MEX configuration object by issuing
a constructor command, like this:

mexcfg = coder.config('mex');

2 Disable the BLAS option.

mexcfg.EnableBLAS = false;

21-19

21 Accelerating MATLAB® Algorithms

Supported Compilers
MATLAB Coder uses the BLAS library on all C/C++ compilers except:

• Watcom

• Intel

• Borland

The default MATLAB compiler for Windows 32–bit platforms, lcc, supports
the BLAS library, but it is not designed to generate high performance code.
To install a different C/C++ compiler, use the mex -setup command, as
described in “Build MEX-Files”.

21-20

Control Run-Time Checks

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 21-21

“When to Disable Run-Time Checks” on page 21-22

“How to Disable Run-Time Checks” on page 21-22

Types of Run-Time Checks
The code generated for your MATLAB functions includes the following
run-time checks and external calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity
checks, violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution These checks are enabled by default. Without these checks, the
only way to end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information
about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 13-12.

21-21

21 Accelerating MATLAB® Algorithms

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower MEX function execution than generating code with
the checks disabled. Similarly, extrinsic calls are time consuming and have
an adverse effect on performance. Disabling run-time checks and extrinsic
calls usually results in streamlined generated code and faster MEX function
execution. The following table lists issues to consider when disabling run-time
checks and extrinsic calls.

Consider disabling... Only if...

Memory integrity checks You have already verified that
all array bounds and dimension
checking is unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are using extrinsic calls only
for functions that do not affect
application results.

How to Disable Run-Time Checks
You can disable run-time checks explicitly from the project settings dialog
box, the command line, or a MEX configuration dialog box.

Disabling Run-Time Checks in the Project Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

2 On the Project Settings dialog box Speed tab, clear Ensure memory
integrity, Enable responsiveness to CTRL+C and graphics
refreshing or Extrinsic calls, as applicable.

21-22

Control Run-Time Checks

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');

2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties to false, as applicable:

mexcfg.IntegrityChecks = false;
mexcfg.ExtrinsicCalls = false;
mexcfg.ResponsivenessChecks = false;

21-23

21 Accelerating MATLAB® Algorithms

Acceleration of MATLAB Algorithms Using Parallel
for-loops (parfor)

In this section...

“Parallel for-loops (parfor) in MEX Functions” on page 21-24

“When to Use parfor-loops” on page 21-25

“When Not to Use parfor-loops” on page 21-26

“Control Compilation of parfor-loops” on page 21-26

“Supported Compilers” on page 21-27

“parfor-Loop Syntax and Restrictions” on page 21-28

“parfor Limitations” on page 21-29

Parallel for-loops (parfor) in MEX Functions
To potentially accelerate execution of generated code, you can generate MEX
functions from MATLAB code that contains parallel for-loops (parfor-loops).
A parfor-loop in MATLAB software, like the standard MATLAB for-loop,
executes a series of statements (the loop body) over a range of values. For
more information, see “How parfor-loops Improve Performance” on page 21-25.

So that the generated MEX functions can run in parallel on multiple cores
on a desktop, the MATLAB Coder software uses the Open Multi-Processing
(OpenMP) application interface to support shared-memory, multicore code
generation. If you want distributed parallelism, see Parallel Computing
Toolbox™. By default, MATLAB Coder uses up to as many cores as it finds
available. If you specify an upper limit on the number of threads to use,
MATLAB Coder uses no more than that number of cores, even if additional
cores are available. If you request more threads than the number of available
cores, MATLAB Coder uses the maximum number of cores available at the
time of the call. If there are fewer iterations than threads, some threads
perform no work. For more information, see parfor.

Because the loop body can execute in parallel on multiple threads, the loop
body must conform to certain restrictions. If MATLAB Coder software detects
loops that do not conform to the parfor specification, it does not generate

21-24

Acceleration of MATLAB® Algorithms Using Parallel for-loops (parfor)

code and produces an error. For more information, see “What Is Allowed in a
parfor-loop” on page 21-28.

How parfor-loops Improve Performance
A parfor-loop might provide better performance than its analogous for-loop
because several threads can be computing concurrently on the same loop.

Each execution of the body of a parfor-loop is an iteration. The threads
evaluate iterations in no particular order and independently of each other.
Because each iteration is independent, there is no need to synchronize them.
If the number of threads is equal to the number of loop iterations, each thread
performs one iteration of the loop. If there are more iterations than threads,
some threads perform more than one loop iteration.

For example, a loop of 100 iterations could run on 20 threads, so that
simultaneously the threads each execute only five iterations of the loop. You
might not get quite 20 times improvement in speed because of parallelization
overheads, such as thread creation and deletion. So whether your loop takes
a long time to run because it has many iterations or because each iteration
takes a long time, in most cases, you can improve your loop speed by using
multiple threads. Under certain rare circumstances, the use of parfor might
decrease performance.

When to Use parfor-loops

Many Iterations of a Simple Calculation
If you need many loop iterations of a simple calculation, parfor divides the
loop iterations into groups so that each thread executes some portion of the
total number of iterations.

Loop Iterations Take a Long Time to Execute
When you have loop iterations that take a long time to execute, parfor
executes the iterations simultaneously on different threads.

21-25

21 Accelerating MATLAB® Algorithms

When Not to Use parfor-loops

Loop Iterations Are Dependent
When an iteration in your loop depends on the results of other iterations,
you cannot use a parfor-loop . If MATLAB Coder software detects loops
that do not conform to the parfor specification, it does not generate code
and produces an error.

Reductions are an exception to the rule that loop iterations must be
independent. A reduction variable accumulates a value that depends on all
the iterations together, but is independent of the iteration order. MATLAB
Coder allows only scalar reduction variables in parfor-loops. For example:

X = X + expr;

or

Y = foo(Y, expr);

For more information, see “Reduction Variables” on page 21-39.

Small Number of Simple Calculations
You might not accelerate execution for a small number of calculations due to
parallelization overheads such as the time taken for thread creation and
deletion.

Results Depend on Order of Evaluation of Loop Parameters
Do not rely on the order of evaluation of the initval, endval, and numThreads
parameters.

Control Compilation of parfor-loops
By default, MATLAB Coder generates a MEX function that can run the
parfor-loop on multiple threads. To generate a MEX function that treats
parfor-loops as for-loops and runs on a single thread, disable parfor by
using the codegen function -O disable:openmp option.

21-26

Acceleration of MATLAB® Algorithms Using Parallel for-loops (parfor)

When to Disable parfor
Disable parfor if you want to:

• Compare the performance of the serial and parallel versions of the
generated MEX function.

• Investigate failures. If the parallel version of the generated MEX function
fails, disable parfor and generate a serial version to facilitate debugging.

• Use C compilers that do not support OpenMP.

Supported Compilers
You can generate MEX functions capable of running on multiple threads
for MATLAB code that contains parfor-loops using all supported compilers
except the Microsoft Visual Studio SDK, Open Watcom, and LCC. If you use
the Microsoft Visual Studio SDK, Open Watcom or LCC, MATLAB Coder
treats the parfor-loops as for-loops and the generated MEX function runs on
a single thread.

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating code, you must set up the compiler. See “Setting Up the
C/C++ Compiler”.

When MATLAB Coder generates a MEX function for a parfor-loop, it
automatically sets the language to C++. If you are integrating custom code,
you must wrap declarations in the custom header file with extern "C" {}.
For example:

#include "reftest.h"

#ifdef __cplusplus
extern "C" {
#endif

void foow(double *);

#ifdef __cplusplus
}

21-27

21 Accelerating MATLAB® Algorithms

#endif

For more information, see “Custom C/C++ Code Integration” on page 20-12.

parfor-Loop Syntax and Restrictions

parfor Syntax
Use this syntax for a parfor-loop:

parfor i = M:N
parfor (i = M:N)

Do not use this syntax:

parfor (i=M:K:N)
parfor i=M:K:N

To specify the maximum number of threads to use, use this syntax:

parfor (i = 1:N,NumThreads)

For more information, see parfor.

What Is Allowed in a parfor-loop
Assume that each iteration of a parfor-loop is evaluated by a different
MATLAB thread. If you have a for-loop in which all iterations are completely
independent of each other, this loop is a good candidate for a parfor-loop. If
one iteration depends on the results of another iteration, these iterations are
not independent and cannot be evaluated in parallel. Reduction assignments
are an exception to the rule that loop iterations must be independent.
For more information, see “Reduction Assignments, Associativity, and
Commutativity of Reduction Functions” on page 21-44.

The following examples produce equivalent results, with a for-loop on the
left, and a parfor-loop on the right. Try typing each in your MATLAB
Command Window.

21-28

Acceleration of MATLAB® Algorithms Using Parallel for-loops (parfor)

clear A
for i = 1:8

A(i) = i;
end
A

clear A
parfor i = 1:8

A(i) = i;
end
A

Each element of A is equal to its index. The parfor-loop works because each
element depends upon only its iteration of the loop. for-loops that only repeat
such independent tasks are ideally suited candidates for parfor-loops.

In a parfor-loop, MATLAB Coder does not support variables that it cannot
classify. MATLAB Coder classifies variables inside a parfor-loop into one
of the categories detailed in “Classification of Variables in parfor-loops” on
page 21-36.

parfor Limitations
The following limitations apply when generating MEX functions for
parfor-loops.

Nested parfor-Loops
The body of a parfor-loop cannot contain another parfor-loop. However, it
can call a function that contains another parfor-loop.

Break and Return Statements
The body of a parfor-loop cannot contain break or return statements.

Global and Persistent Variables
The body of a parfor-loop cannot use global or persistent variable.

Scalar Reduction Variables
MATLAB Coder supports only scalar reduction variables. You cannot
generate a MEX function for the following code because the reduction
variable, r, is an array.

r = ones(1,100);

21-29

21 Accelerating MATLAB® Algorithms

parfor i = 1:N
r = r*2;

end

Instead, rewrite the parfor-loop to replace the reduction variable with a
sliced array.

r = ones(1,100);
parfor i = 1:100

for j = 1:N
r(i,:) = r(i,:)*2;

end
end

Unsupported Reduction Functions
MATLAB Coder software does not support the following functions as
reduction functions:

• intersect

You cannot generate MEX functions for parfor-loops that contain
statements such as the following, where expr is a MATLAB expression.

- X = intersect(X, expr)

- X = intersect(expr, X)
,

• union

You cannot generate MEX functions for parfor-loops that contain
statements such as the following, where expr is a MATLAB expression.

- X = union(X, expr)

- X = union(expr, X)

MATLAB Classes
MATLAB Coder software does not support reductions on MATLAB classes.

21-30

Acceleration of MATLAB® Algorithms Using Parallel for-loops (parfor)

Calls to External C Code
MATLAB Coder does not support the use of coder.ceval in reductions. For
example, you cannot generate code for the following parfor-loop:

parfor i=1:4
y=coder.ceval('myCFcn',y,i);

end

Instead, write a local function that calls the C code using coder.ceval and
call this function in the parfor-loop. For example:

parfor i=1:4
y = callMyCFcn(y,i);

end
...
function y = callMyCFcn(y,i)
y = coder.ceval('mCyFcn', y , i);

end

Extrinsic Calls
You cannot call extrinsic functions in the body of a parfor-loop. Calls to
functions that contain extrinsic calls result in a run-time error.

rand Functions
MATLAB Coder software does not support calling the rand, randi, or randn
functions in the body of a parfor-loop.

Concatenations
MATLAB Coder software does not support concatenations as reduction
variables. You cannot generate MEX functions for parfor-loops that contain
statements such as the following, where expr is a MATLAB expression.

• X = [X, expr]

• X = [expr, X]

• X = [X; expr]

• X = [expr; X]

21-31

21 Accelerating MATLAB® Algorithms

Integrating Custom Code
When MATLAB Coder generates a MEX function for MATLAB code that
contains a parfor-loop, it automatically sets the language to C++. If you are
integrating custom code, you must wrap declarations in the custom header
file with extern "C" {}. For example:

#include "reftest.h"

#ifdef __cplusplus
extern "C" {
#endif

void foow(double *);

#ifdef __cplusplus
}
#endif

For more information, see “Custom C/C++ Code Integration” on page 20-12.

Inlining Code
coder.inline('always') has no effect for functions called from parfor-loops.
MATLAB Coder never inlines functions into parfor-loops.

Unrolling Code
You cannot use coder.unroll in parfor-loops.

If a loop is unrolled inside a parfor-loop, MATLAB Coder cannot classify the
variable. For example, consider the following code.

for j=coder.unroll(3:6)
y(i,j)=y(i,j)+i+j;

end

This code is unrolled to:

y(i,3)=y(i,3)+i+3;
...

21-32

Acceleration of MATLAB® Algorithms Using Parallel for-loops (parfor)

y(i,6)=y(i,6)+i+6;

In the unrolled code, MATLAB Coder cannot classify the variable y because y
is indexed in different ways inside the parfor-loop.

MATLAB Coder does not support variables that it cannot classify. For more
information, see “Classification of Variables in parfor-loops” on page 21-36.

varargin/varargout
You cannot use varargin or varargout in parfor-loops.

21-33

21 Accelerating MATLAB® Algorithms

Reduction Assignments in parfor-loops
Reduction assignments, or reductions, are an exception to the rule that loop
iterations must be independent. A reduction variable accumulates a value
that depends on all the loop iterations together, but is independent of the
iteration order.

Scalar Reduction Variables
MATLAB Coder allows only scalar reduction variables in parfor-loops. For
example:

X = X + expr;

or

Y = foo(Y, expr);

This example shows a parfor-loop that uses a scalar reduction assignment. It
uses the reduction variable x to accumulate a sum across 10 iterations of the
loop. The execution order of the iterations on the threads does not matter.

x = 0;
parfor i = 1:10

x = x + i;
end
x

For a list of supported reduction variables see “Reduction Variables” on
page 21-39.

Multiple Reductions in a parfor-loop
You can perform the same reduction assignment multiple times within a
parfor-loop provided that you use the same data type each time.

For example, in the following parfor-loop, u(i) and v(i) must be the same
type.

parfor i = 1:10;
X = X + u(i);

21-34

Reduction Assignments in parfor-loops

X = X + v(i);
end

Similarly, the following example is valid provided that u(i) and v(i) are
the same type.

parfor i=1:10
r = foo(r,u(i));
r = foo(r,v(i));

end

21-35

21 Accelerating MATLAB® Algorithms

Classification of Variables in parfor-loops

In this section...

“Overview” on page 21-36

“Sliced Variables” on page 21-37

“Broadcast Variables” on page 21-39

“Reduction Variables” on page 21-39

“Temporary Variables” on page 21-45

Overview
MATLAB Coder classifies variables inside a parfor-loop into one of the
categories in the following table. It does not support variables that it cannot
classify. If a parfor-loop contains any variables that cannot be uniquely
categorized or if any variables violate their category restrictions, the
parfor-loop generates an error.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary A variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

a=0;
c=pi;
z=0;
r=rand(1,10);

21-36

Classification of Variables in parfor-loops

parfor i=1:10
a=i; % 'a' is a temporary variable
z=z+i; % 'z' is a reduction variable
b(i)=r(i); % 'b' is a sliced output variable;

% 'r' a sliced input variable
if i<=c % 'c' is a broadcast variable

d=2*a; % 'd' is a temporary variable
end

end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices,
which are then operated on separately by different threads. Each iteration
of the loop works on a different slice of the array.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)
B(i) = f(A(i));

end

Characteristics of a Sliced Variable
A variable in a parfor-loop is sliced if it has all of the following characteristics:

• Type of First-Level Indexing — The first level of indexing is parentheses,
().

• Fixed Index Listing — Within the first-level parenthesis, the list of indices
is the same for all occurrences of a given variable.

• Form of Indexing — Within the list of indices for the variable, exactly one
index involves the loop variable.

• Shape of Array — In assigning to a sliced variable, the right-hand side
of the assignment is not [] or '' (these operators indicate deletion of
elements).

Type of First-Level Indexing. For a sliced variable, the first level of indexing is
enclosed in parentheses, (). For example, A(...). If you reference a variable
using dot notation, A.x, the variable is not sliced.

21-37

21 Accelerating MATLAB® Algorithms

Variable A on the left is not sliced; variable A on the right is sliced:

A.q(i,12) A(i,12).q

Fixed Index Listing. Within the first-level parentheses of a sliced variable’s
indexing, the list of indices is the same for all occurrences of a given variable.

Variable B on the left is not sliced because B is indexed by i and i+1 in
different places. Variable B on the right is sliced.

parfor i = 1:10
B(i) = B(i+1) + 1;

end

parfor i = 1:10
B(i+1) = B(i+1) + 1;

end

Form of Indexing. Within the list of indices for a sliced variable, one index is
of the form i, i+k, i-k, k+i, or k-i.

• i is the loop variable.

• k is a constant or a simple (nonindexed) variable.

• Every other index is a constant, a simple variable, colon, or end.

When you use other variables along with the loop variable to index an array,
you cannot set these variables inside the loop. These variables are constant
over the execution of the entire parfor statement. You cannot combine the
loop variable with itself to form an index expression.

In the following examples, i is the loop variable, j and k are nonindexed
variables.

Variable A Is Not Sliced Variable A Is Sliced

A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

21-38

Classification of Variables in parfor-loops

Shape of Array. A sliced variable must maintain a constant shape. In the
following examples, the variable A is not sliced:

A(i,:) = [];
A(end + 1) = i;

Broadcast Variables
A broadcast variable is any variable other than the loop variable or a sliced
variable that is not modified inside the loop.

Reduction Variables
A reduction variable accumulates a value that depends on all the iterations
together, but is independent of the iteration order. MATLAB Coder allows
only scalar reduction variables in parfor-loops.

This example shows a parfor-loop that uses a scalar reduction assignment. It
uses the reduction variable x to accumulate a sum across 10 iterations of the
loop. The execution order of the iterations on the threads does not matter.

x = 0;
parfor i = 1:10

x = x + i;
end
x

Where expr is a MATLAB expression, reduction variables appear on both
sides of an assignment statement.

X = X + expr X = expr + X

X = X - expr See “Reduction Assignments,
Associativity, and Commutativity of
Reduction Functions” on page 21-44

X = X .* expr X = expr .* X

X = X * expr X = expr * X

X = X & expr X = expr & X

X = X | expr X = expr | X

21-39

21 Accelerating MATLAB® Algorithms

X = min(X, expr) X = min(expr, X)

X = max(X, expr) X = max(expr, X)

X=f(X, expr)
Function f must be a user-defined
function.

X = f(expr, X)
See “Reduction Assignments,
Associativity, and Commutativity of
Reduction Functions” on page 21-44

Each of the allowed statements is referred to as a reduction assignment. A
reduction variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable X:

X = ...; % Do some initialization of X
parfor i = 1:n

X = X + d(i);
end

This loop is equivalent to the following, where each d(i) is calculated by
a different iteration:

X = X + d(1) + ... + d(n)

If the loop were a regular for-loop, the variable X in each iteration would get
its value either before entering the loop or from the previous iteration of the
loop. However, this concept does not apply to parfor-loops.

In a parfor-loop, the value of X is not updated directly inside each thread.
Rather, additions of d(i) are done in each thread, with i ranging over the
subset of 1:n being performed on that thread. The software then accumulates
the results into X.

Similarly, the reduction:

r=r<op> x(i)

is equivalent to:

r=r<op>x(1)] <op>x(2)...<op>x(n)

21-40

Classification of Variables in parfor-loops

The operation <op> is first applied to x(1)...x(n), then the partial result is
applied to r.

If operation <op> takes two inputs, it should meet one of the following criteria:

• Take two arguments of typeof(x(i)) and return typeof(x(i))

• Take one argument of typeof(r) and one of typeof(x(i)) and return
typeof(r)

Rules for Reduction Variables

Use the same reduction function or operation in all reduction
assignments. For any reduction variable, you must use the same reduction
function or operation in all reduction assignments for that variable. In
the following example, the parfor-loop on the left is not valid because the
reduction assignment uses + in one instance, and * in another.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

parfor i = 1:n
if A > 5*k

A = A + 1;
else

A = A * 2;
end

parfor i = 1:n
if A > 5*k

A = A * 3;
else

A = A * 2;
end

Restrictions on reduction function parameter and return types. A
reduction r=r<op> x(i), should take arguments of typeof(x(i)) and return
typeof(x(i)) or take arguments of typeof(r) and typeof(x(i)) and return
typeof(r).

In the following example, in the invalid loop, r is a fixed-point type and 2 is
not. To fix this issue, cast 2 to be the same type as r.

21-41

21 Accelerating MATLAB® Algorithms

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function r = fiops(in)
r=fi(in,'WordLength',20,...

'FractionLength',14,...
'SumMode','SpecifyPrecision',...
'SumWordLength',20,...
'SumFractionLength',14,...
'ProductMode', 'SpecifyPrecision',...
'ProductWordLength',20,...
'ProductFractionLength',14);

parfor i = 1:10
r = r*2;

end

r=fi(in,'WordLength',20,...
'FractionLength',14,...
'SumMode','SpecifyPrecision',...
'SumWordLength',20,...
'SumFractionLength',14,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',20,...
'ProductFractionLength',14);

T = r.numerictype;
F = r.fimath;
parfor i = 1:10

r = r*fi(2,T,F);
end

21-42

Classification of Variables in parfor-loops

In the following example, the reduction function fcn is invalid because it does
not handle the case when input u is fixed point. (The + and * operations are
automatically polymorphic.) You must write a polymorphic version of fcn
to handle the expected input types.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function [y0, y1, y2] = pfuserfcn(u)
y0 = 0;
y1 = 1;
[F, N] = fiprops();
y2 = fi(1,N,F);
parfor (i=1:numel(u),12)

y0 = y0 + u(i);
y1 = y1 * u(i);
y2 = fcn(y2, u(i));

end
end

function y = fcn(u, v)
y = u * v;

end

function [y0, y1, y2] = pfuserfcn(u)
y0 = 0;
y1 = 1;
[F, N] = fiprops();
y2 = fi(1,N,F);
parfor (i=1:numel(u),12)

y0 = y0 + u(i);
y1 = y1 * u(i);
y2 = fcn(y2, u(i));

end
end
% fcn handles inputs of type double
% and fi
function y = fcn(u, v)

if isa(u,'double')
y = u * v;

else
[F, N] = fiprops();
y = u * fi(v,N,F);

end
end

function [F, N] = fiprops()
N = numerictype(1,96,30);
F = fimath('ProductMode',...

'SpecifyPrecision',...
'ProductWordLength',96);

end

21-43

21 Accelerating MATLAB® Algorithms

Reduction Assignments, Associativity, and Commutativity of
Reduction Functions
Reduction Assignments. MATLAB Coder does not allow reduction variables
to be read anywhere in the parfor-loop except in reduction statements. In
the following example, the call foo(r) after the reduction statement r=r+i
causes the loop to be invalid.

function r = temp %#codegen
r = 0;
parfor i=1:10

r = r + i;
foo(r);

end
end

Associativity in Reduction Assignments. If you use a user-defined function
f in the definition of a reduction variable, to get deterministic behavior of
parfor-loops, the reduction function f must be associative.

Note If f is not associative, MATLAB Coder does not generate an error. You
must write code that meets this recommendation.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

Commutativity in Reduction Assignments. Some associative functions,
including +, ., min, and max, are also commutative. That is, they satisfy the
following for all a and b:

f(a,b) = f(b,a)

The function f of a reduction assignment must be commutative. If f is
not commutative, different executions of the loop might result in different
answers.

Unless f is a known noncommutative built-in, the software assumes that it
is commutative.

21-44

Classification of Variables in parfor-loops

Temporary Variables
A temporary variable is any variable that is the target of a direct, nonindexed
assignment, but is not a reduction variable. In the following parfor-loop, a
and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10

a = i; % Variable a is temporary
z = z + i;
if i <= 5

d = 2*a; % Variable d is temporary
end

end

In contrast to the behavior of a for-loop, before each iteration of a parfor-loop,
MATLAB Coder effectively clears any temporary variables. Because the
iterations must be independent, the values of temporary variables cannot
be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are
defined separately for each iteration.

A temporary variable in the context of the parfor statement has no effect on
a variable with the same name that exists outside the loop.

Uninitialized Temporaries
Because temporary variables are cleared at the beginning of every iteration,
MATLAB Coder can detect certain cases in which any iteration through the
loop uses the temporary variable before it is set in that iteration. In this case,
MATLAB Coder issues a static error rather than a run-time error, because
there is little point in allowing execution to proceed if a run-time error will
occur. For example, suppose you write:

b = true;
parfor i = 1:n

if b && some_condition(i)
do_something(i);
b = false;

21-45

21 Accelerating MATLAB® Algorithms

end
...

end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment
inside the loop. Therefore, it is cleared at the start of each iteration, so its
use in the condition of the if is always uninitialized. (If you change parfor
to for, the value of b assumes sequential execution of the loop, so that
do_something(i) is executed for only the lower values of i until b is set
false.)

21-46

Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor)

Accelerate MATLAB Algorithms That Use Parallel for-loops
(parfor)

This example shows how to generate a MEX function for a MATLAB
algorithm that contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10

a(i,:)=real(fft(r(i,:)));
end

2 Generate a MEX function for test_parfor. At the MATLAB command
line, enter:

codegen test_parfor

codegen generates a MEX function, test_parfor_mex, in the current
folder.

3 Run the MEX function. At the MATLAB command line, enter:

test_parfor_mex

Because you did not specify the maximum number of threads to use, the
generated MEX function executes the loop iterations in parallel on the
maximum number of available cores.

21-47

21 Accelerating MATLAB® Algorithms

Accelerate MATLAB Algorithms That Use Parallel for-loops
(parfor) Specifying the Maximum Number of Threads

This example shows how to specify the maximum number of threads to use
for a parfor-loop. Because you specify the maximum number of threads to
use, the generated MEX function executes the loop iterations in parallel on
as many cores as available, up to the maximum number that you specify. If
you specify more threads than there are cores available, the MEX function
uses all available cores.

1 Write a MATLAB function, specify_num_threads, that uses one input to
specify the maximum number of threads to execute a parfor-loop in the
generated MEX function. For example:

function y = specify_num_threads(u) %#codegen
y = ones(1,100);
% u specifies maximum number of threads
parfor (i = 1:100,u)

y(i) = i;
end

end

2 Generate a MEX function for specify_num_threads. Use -args {0} to
specify that input u is a scalar double. Use -report to generate a code
generation report. At the MATLAB command line, enter:

codegen -report specify_num_threads -args {0}

codegen generates a MEX function, specify_num_threads_mex, in the
current folder.

3 Run the MEX function, specifying that it try to run in parallel on four
threads. At the MATLAB command line, enter:

specify_num_threads_mex(4)

The generated MEX function runs on up to four cores. If less than four
cores are available, the MEX function runs on the maximum number of
cores available at the time of the call.

21-48

Troubleshooting parfor-loops

Troubleshooting parfor-loops

What Causes Errors About the Use of Global
Structures in Parallel Regions?
• The body of the parfor-loop contains global or persistent variable
declarations. parfor does not support such declarations.

• The parfor-loop contains a call to rand.

• Local variables use more memory than the specified stack size. When this
occurs, MATLAB Coder moves the local variables to a static area and
accesses them using a pointer in a global structure. MATLAB Coder does
not support the use of global structures in parallel regions. If possible,
increase the stack size.

If you are using... Action For More Information

A MATLAB Coder project In the Project Settings
dialog box, on the Advanced
tab, set Inline stack limit to
the new limit.

“Specifying Build
Configuration Parameters
in the Project Settings Dialog
Box” on page 19-28

codegen at the command line
with a configuration object

Create a coder.CodeConfig or
coder.EmbeddedCodeConfig
object, as applicable, and
set the InlineStackLimit
parameter to the new limit.

“Specifying Build
Configuration Parameters
at the Command Line Using
Configuration Objects” on
page 19-29

Compiler Does Not Support OpenMP
The MATLAB Coder software uses the Open Multi-Processing (OpenMP)
application interface to support shared-memory, multicore code generation.
This allows you to use parfor to generate MEX functions that run in parallel
on multiple cores on a desktop. For MEX functions, OpenMP is enabled
by default. If your compiler does not support OpenMP, MATLAB Coder
generates a warning.

If your application does not use parfor, disable the warning:

21-49

21 Accelerating MATLAB® Algorithms

• At the command line, use codegen with the -O disable:openmp option.
For more information, see codegen.

• In a project, on the Project Settings dialog box All Settings pane, under
Advanced settings, set Enable OpenMP library if possible to No.

If your application does use parfor, install a compiler that supports
OpenMP. You can use all supported compilers except Microsoft Visual
Studio SDK, Open Watcom, and LCC. For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

21-50

Accelerating Simulation of Bouncing Balls

Accelerating Simulation of Bouncing Balls
This example shows how to accelerate MATLAB algorithm execution using a
generated MEX function. It uses the ’codegen’ command to generate a MEX
function for a complicated application that uses multiple MATLAB files.
You can use ’codegen’ to check that your MATLAB code is suitable for code
generation and, in many cases, to accelerate your MATLAB algorithm. You
can run the MEX function to check for run-time errors.

Prerequisites

To run this example, you must install a C compiler and set it up using the ’mex
-setup’ command. For more information, see Setting Up Your C Compiler.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_bouncing_balls');

About the ’run_balls’ Function

The run_balls.m function takes a single input to specify the number of
bouncing balls to simulate. The simulation runs and plots the balls bouncing
until there is no energy left and returns the state (positions) of all the balls.

type run_balls

% balls = run_balls(n)
% Given 'n' number of balls, run a simulation until the balls come to a
% complete halt (or when the system has no more kinetic energy).
function balls = run_balls(n) %#codegen

% Copyright 2010-2011 The MathWorks, Inc.

21-51

21 Accelerating MATLAB® Algorithms

% Seeding the random number generator will guarantee that we get
% precisely the same simulation every time we call this function.
old_settings = rng(1283,'V4');

% The 'cdata' variable is a matrix representing the colordata bitmap which
% will be rendered at every time step.
cdata = zeros(400,600,'uint8');

% Setup figure windows
im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.
balls = initialize_balls(cdata, n);

energy = 2; % Something greater than 1
while energy > 1

% Clear the bitmap
cdata(:,:) = 0;
% Apply one iteration of movement
[cdata,balls,energy] = step_function(cdata,balls);
% Render the current state
cdata = draw_balls(cdata, balls);
refresh_image(im, cdata);

end

% Restore RNG settings.
rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the
name of the MATLAB file to compile. Pass an example input (-args 0) to
indicate that the generated MEX function will be called with an input of
type double.

codegen run_balls -args 0

The ’run_balls’ function calls other MATLAB functions, but you need to
specify only the entry-point function when calling ’codegen’.

21-52

Accelerating Simulation of Bouncing Balls

By default, ’codegen’ generates a MEX function named ’run_balls_mex’ in the
current folder. This allows you to test the MATLAB code and MEX function
and compare the results.

Compare Results

Run and time the original ’run_balls’ function followed by the generated MEX
function.

tic, run_balls(50); t1 = toc;
tic, run_balls_mex(50); t2 = toc;

Estimated speed up is:

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

Speed up: x ~4.8

Clean Up

Remove files and return to original folder

21-53

21 Accelerating MATLAB® Algorithms

Run Command: Cleanup

cleanup

21-54

22

Calling C/C++ Functions
from Generated Code

• “MATLAB® Coder™ Interface to C/C++ Code” on page 22-2

• “Call External C/C++ Functions” on page 22-7

• “Return Multiple Values from C Functions” on page 22-9

• “How MATLAB® Coder™ Infers C/C++ Data Types” on page 22-10

22 Calling C/C++ Functions from Generated Code

MATLAB Coder Interface to C/C++ Code

In this section...

“How to Call C/C++ Code from Generated Code” on page 22-2

“Why Call C/C++ Functions from Generated Code?” on page 22-2

“Call External C/C++ Functions” on page 22-3

“Pass Arguments by Reference to External C/C++ Functions” on page 22-3

“Manipulate C Data” on page 22-5

How to Call C/C++ Code from Generated Code
MATLAB Coder provides a set of functions for:

• Calling external C/C++ code from generated code (see “Call External C/C++
Functions” on page 22-3)

• Passing arguments by reference to C/C++ code (see “Pass Arguments by
Reference to External C/C++ Functions” on page 22-3)

• Manipulating C/C++ data (see “Manipulate C Data” on page 22-5)

By using these functions, you gain unrestricted access to external C/C++
code. Misuse of these functions or errors in your C/C++ code can destabilize
MATLAB when generating MEX functions.

Why Call C/C++ Functions from Generated Code?
Call C/C++ functions from generated code when you want to:

• Use legacy C/C++ code

• Use your own optimized C/C++ functions instead of generated code.

• Interface your libraries and hardware with MATLAB functions.

.

22-2

MATLAB® Coder™ Interface to C/C++ Code

Call External C/C++ Functions
Use the coder.ceval function to call external C/C++ functions. coder.ceval
passes function input and output arguments to C/C++ functions either by
value or by reference.

You must define these called functions in external C/C++ source files or in
C/C++ libraries. You then need to include C/C++ source files, libraries, object
files, and header files in the compilation to configure your environment.

Pass Arguments by Reference to External C/C++
Functions
By default, coder.ceval passes arguments by value to the C/C++ function
whenever C/C++ supports passing arguments by value. The following
constructs allow you to pass MATLAB variables as arguments by reference
to external C/C++ functions:

• coder.ref — pass value by reference

• coder.rref — pass read-only value by reference

• coder.wref — pass write-only value by reference

These constructs offer the following benefits:

• Passing values by reference optimizes memory use.

When you pass arguments by value, MATLAB Coder passes a copy of the
value of each argument to the C/C++ function to preserve the original
values. When you pass arguments by reference, MATLAB Coder does not
copy values. The memory savings can be significant if you need to pass
large matrices to the C/C++ function.

• Passing write-only values by reference allows you to return multiple
outputs.

By using coder.wref, you can achieve the effect of returning multiple
outputs from your C/C++ function, including arrays and matrices.
Otherwise, the C/C++ function can return only a single scalar value
through its return statement.

22-3

22 Calling C/C++ Functions from Generated Code

Do not store pointers that you pass to C/C++ functions because MATLAB
Coder optimizes the code based on the assumption that you do not store the
addresses of these variables. Storing the addresses might invalidate our
optimizations leading to incorrect behavior. For example, if a MATLAB
function passes a pointer to an array using coder.ref, coder.rref, or
coder.wref, then the C/C++ function can modify the data in the array—but
you should not store the pointer for future use.

When you pass arguments by reference using coder.rref, coder.wref, and
coder.ref, the corresponding C/C++ function signature must declare these
variables as pointers of the same data type. Otherwise, the C/C++ compiler
generates a type mismatch error.

For example, suppose your MATLAB function calls an external C function
ctest:

function y = fcn()
u = pi;

y = 0;
y = coder.ceval('ctest',u);

Now suppose the C function signature is:

real32_T ctest(real_T *a)

When you compile the code, you get a type mismatch error because
coder.ceval calls ctest with an argument of type double when ctest
expects a pointer to a double-precision, floating-point value.

Match the types of arguments in coder.ceval with their counterparts in the
C function. For instance, you can fix the error in the previous example by
passing the argument by reference:

y = coder.ceval('ctest', coder.rref(u));

You can pass a reference to an element of a matrix. For example, to pass the
second element of the matrix v, you can use the following code:

y = coder.ceval('ctest', coder.ref(v(1,2)));

22-4

MATLAB® Coder™ Interface to C/C++ Code

Manipulate C Data
The construct coder.opaque allows you to manipulate C/C++ data that a
MATLAB function does not recognize. You can store the opaque data in a
variable or structure field and pass it to, or return it from, a C/C++ function
using coder.ceval.

Declaring Opaque Data
The following example uses coder.opaque to declare a variable f as a FILE *
type.

% This example returns its own source code by using

% fopen/fread/fclose.

function buffer = filetest

%#codegen

% Declare 'f' as an opaque type 'FILE *'

f = coder.opaque('FILE *', 'NULL');

% Open file in binary mode

f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put

% contents into buffer

n = int32(1);

i = int32(1);

buffer = char(zeros(1,8192));

while n > 0

% By default, MATLAB converts all constant values

% to doubles in generated code

% so explicit type conversion to in32 is inserted.

n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...

int32(numel(buffer)), f);

i = i + n;

end

coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB string

function y = cstring(x)

22-5

22 Calling C/C++ Functions from Generated Code

y = [x char(0)];

% Remove all character 13 (CR) but keep character 10 (LF)

function buffer = strip_cr(buffer)

j = 1;

for i = 1:numel(buffer)

if buffer(i) ~= char(13)

buffer(j) = buffer(i);

j = j + 1;

end

end

buffer(i) = 0;

22-6

Call External C/C++ Functions

Call External C/C++ Functions

In this section...

“Workflow for Calling External C/C++ Functions” on page 22-7

“Best Practices for Calling C/C++ Code from Generated Code” on page 22-8

Workflow for Calling External C/C++ Functions
To call external C/C++ functions from generated code:

1 Write your C/C++ functions in external source files or libraries.

2 Create header files, if required.

The header file defines the data types used by the C/C++ functions that
MATLAB Coder generates in code, as described in “Mapping MATLAB
Types to C/C++” on page 22-10.

Tip One way to add these type definitions is to include the header file
tmwtypes.h, which defines all general data types supported by MATLAB.
This header file is in matlabroot/extern/include. Check the definitions
in tmwtypes.h to determine if they are compatible with your target. If not,
define these types in your own header files.

3 In your MATLAB function, add calls to coder.ceval to invoke your
external C/C++ functions.

You need one coder.ceval statement for each call to a C/C++ function.
In your coder.ceval statements, use coder.ref, coder.rref, and
coder.wref constructs as required (see “Pass Arguments by Reference to
External C/C++ Functions” on page 22-3).

4 Include the custom C/C++ functions in the build. See “Custom C/C++ Code
Integration” on page 20-12.

5 Check that there are no compilation warnings about data type mismatches.

22-7

22 Calling C/C++ Functions from Generated Code

Perform this check so that you catch type mismatches between C/C++ and
MATLAB (see “How MATLAB® Coder™ Infers C/C++ Data Types” on page
22-10).

6 Generate code and fix errors.

7 Run your application.

Best Practices for Calling C/C++ Code from Generated
Code
The following are recommended practices when calling C/C++ code from
generated code.

• Start small. — Create a test function and learn how coder.ceval and
its related constructs work.

• Use separate files. — Create a file for each C/C++ function that you call.
Make sure that you call the C/C++ functions with suitable types.

• In a header file, declare a function prototype for each function that you call,
and include this header file in the generated code. For more information,
see “Custom C/C++ Code Integration” on page 20-12.

22-8

Return Multiple Values from C Functions

Return Multiple Values from C Functions
The C language restricts functions from returning multiple outputs; instead,
they return only a single, scalar value. The constructs coder.ref and
coder.wref allow MATLAB functions to exchange multiple outputs with the
external C functions that they call.

For example, suppose you write a MATLAB function foo that takes two
inputs x and y and returns three outputs a, b, and c. In MATLAB, you call
this function as follows:

[a, b, c] = foo (x, y)

If you rewrite foo as a C function, you cannot return a, b, and c through the
return statement. You can create a C function with multiple pointer type
input arguments, and pass the output parameters by reference. For example:

foo(real_T x, real_T y, real_T *a, real_T *b, real_T *c)

Then you can call the C function with multiple outputs from a MATLAB
function using coder.wref constructs:

coder.ceval ('foo', x, y, ...
coder.wref(a), coder.wref(b), coder.wref(c));

Similarly, suppose that one of the outputs a is also an input argument. In this
case, create a C function with multiple pointer type input arguments, and
pass the output parameters by reference. For example:

foo(real_T *a, real_T *b, real_T *c)

Then call the C function from a MATLAB function using coder.wref and
coder.rref constructs:

coder.ceval ('foo', coder.ref(a), coder.wref(b), coder.wref(c));

22-9

22 Calling C/C++ Functions from Generated Code

How MATLAB Coder Infers C/C++ Data Types

In this section...

“Mapping MATLAB Types to C/C++” on page 22-10

“Mapping embedded.numerictypes to C/C++” on page 22-11

“Mapping Arrays to C/C++” on page 22-12

“Mapping Complex Values to C/C++” on page 22-12

“Mapping Structures to C/C++ Structures” on page 22-13

“Mapping Strings to C/C++” on page 22-14

“Mapping Multiword Types to C/C++” on page 22-14

Mapping MATLAB Types to C/C++
The C/C++ type associated with a MATLAB variable or expression is based
on the following properties:

• Class

• Size

• Complexity

The following translation table shows the MATLAB types supported for code
generation, and how MATLAB Coder infers the generated code types.

MATLAB Type C/C++ Type C/C++ Reference
Type

int8 int8_T int8_T *

int16 int16_T int16_T *

int32 int32_T int32_T *

uint8 uint8_T uint8_T *

uint16 uint16_T uint16_T *

uint32 uint32_T uint32_T *

double real_T real_T *

22-10

How MATLAB® Coder™ Infers C/C++ Data Types

MATLAB Type C/C++ Type C/C++ Reference
Type

single real32_T real32_T *

char char char *

logical boolean_T boolean_T *

fi numericaltype also influences the C/C++ type.
Integer type varies according to the MATLAB
fixed-point type, as described in “Mapping
embedded.numerictypes to C/C++” on page 22-11.

struct Fields also affect the C/C++ type. See “Mapping
Structures to C/C++ Structures” on page 22-13 .

complex See “Mapping embedded.numerictypes to C/C++”
on page 22-11.

Function handles Not supported.

Multiword types See “Mapping Multiword Types to C/C++” on
page 22-14.

Mapping embedded.numerictypes to C/C++
The following translation table shows how MATLAB Coder infers integer
types from fixed-point objects. In the first column, the fixed-point types are
specified by the Fixed-Point Toolbox function numerictype:

numerictype(signedness, word length, fraction length)

The MATLAB for code generation integer type is the next larger target word
size that can store the fixed-point value, based on its word length. The sign of
the integer type matches the sign of the fixed-point type.

embedded.numerictype C/C++ Type C/C++ Reference
Type

numerictype(1, 16, 15) int16_T int16_T *

numerictype(1, 13, 10) int16_T int16_T *

22-11

22 Calling C/C++ Functions from Generated Code

embedded.numerictype C/C++ Type C/C++ Reference
Type

numerictype(0, 19, 15) uint32_T uint32_T *

numerictype(1, 8, 7) int8_T int8_T *

Mapping Arrays to C/C++
The following translation table shows how MATLAB Coder determines array
types and sizes in generated code. In the first column, the arrays are specified
by the MATLAB function zeros:

zeros(number of rows, number of columns, data type)

MATLAB array data is laid out in column major order.

Array C/C++ Type C/C++ Reference
Type

zeros(10, 5, 'int8') int8_T * int8_T *

zeros(5, 10, 'int8') int8_T * int8_T *

zeros(3, 7) real_T * real_T *

zeros(10, 1, 'single') real32_T * real32_T *

Mapping Complex Values to C/C++
The following translation table shows how the MATLAB Coder infers complex
values in generated code.

Complex C/C++ Type C/C++ Reference
Type

complex int8 cint8_T cint8_T *

complex int16 cint16_T cint16_T *

complex int32 cint32_T cint32_T *

complex uint8 cuint8_T cuint8_T *

22-12

How MATLAB® Coder™ Infers C/C++ Data Types

Complex C/C++ Type C/C++ Reference
Type

complex uint16 cuint16_T cuint16_T *

complex uint32 cuint32_T cuint32_T *

complex double creal_T creal_T *

complex single creal32_T creal32_T *

The MATLAB Coder software defines each complex value as a structure with
a real component re and an imaginary component im, as in this example
from tmwtypes.h:

typedef struct {
real32_T re;/* Real component*/
real32_T im;/* Imaginary component*/

} creal32_T;

MATLAB Coder uses the names re and im in generated code to represent the
components of complex numbers. For example, suppose you define a variable
x of type creal32_T. The generated code references the real component as
x.re and the imaginary component as x.im.

If your C/C++ library requires a different representation, you can define
your own versions of MATLAB Coder complex types, but you must use the
names re for the real components and im for the imaginary components in
your definitions.

The MATLAB Coder software represents a matrix of complex numbers as
an array of structures.

Mapping Structures to C/C++ Structures
The MATLAB Coder software translates structures to C/C++ types
field-by-field. The order of the field items is preserved as given in MATLAB.
To control the name of the generated C/C++ structure type, or provide a
definition, use the coder.cstructname function.

22-13

22 Calling C/C++ Functions from Generated Code

Note If you are not using dynamic memory allocation, arrays in structures
translate into single-dimension arrays, not pointers.

Mapping Strings to C/C++
The MATLAB Coder software translates MATLAB strings to C/C++ character
matrices. Character matrices cannot be used as substitutes for C/C++ strings
because they are not null terminated. You can terminate a MATLAB string
with a null character by appending a zero to the end of the string: ['sample
string' 0]. A single character translates to a C/C++ char type, not a C/C++
string.

Caution Failing to null-terminate your MATLAB strings might cause C/C++
code to crash without compiler errors or warnings.

Mapping Multiword Types to C/C++
The MATLAB Coder software translates multiword types to structure types
that contain an array of integers. The array dimensions depend on the long
type on the target hardware. For example, for a 128-bit fixed-point type, if
the long type on the target hardware is 32-bits, MATLAB Coder generates
a structure with an array of four 32-bit integers.

typedef struct
{

uint32_T chunks[4];
} uint128m_T;

If the long type on the target hardware is 64-bits, MATLAB Coder generates
a structure with an array of two 64-bit integers.

typedef struct
{

uint64_T chunks[2];
} uint128m_T;

22-14

A

Examples

Use this list to find examples in the documentation.

A Examples

Data Management
Defining a Variable for Multiple Execution Paths on page 5-4
Defining All Fields in a Structure on page 5-5
“Defining Uninitialized Variables” on page 5-8
Variable Reuse in an if Statement on page 5-12

A-2

Code Generation for Variable-Size Data

Code Generation for Variable-Size Data
“Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data” on page 7-7
“Specifying the Upper Bounds for All Instances of a Local Variable” on
page 7-8
“Inferring Upper Bounds from Multiple Definitions with Different Shapes”
on page 7-13

A-3

A Examples

Code Generation for Structures
“Adding Fields in Consistent Order on Each Control Flow Path” on page 8-4
“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 8-7
“Defining an Array of Structures Using Concatenation” on page 8-8
“Make Structures Persistent” on page 8-9

A-4

Code Generation for Enumerated Data

Code Generation for Enumerated Data
“if Statement with Enumerated Data Types” on page 9-14
“switch Statement with Enumerated Data Types” on page 9-15
“while Statement with Enumerated Data Types” on page 9-18

A-5

A Examples

Code Generation for Function Handles
“Define and Pass Function Handles for Code Generation” on page 11-3

A-6

Using Variable-Length Argument Lists

Using Variable-Length Argument Lists
“Using Variable Numbers of Arguments in a for-Loop” on page 12-5
“Passing Variable Numbers of Arguments from One Function to Another”
on page 12-7

A-7

A Examples

Generating MEX Functions
“Generate MEX Functions Using the Project Interface” on page 17-17
“Generate MEX Functions at the Command Line” on page 17-25
Generating a MEX Function with Two Entry-Point Functions Using the
Project Interface on page 19-76
Generating a MEX Function with Two Entry-Point Functions at the
Command Line on page 19-78

A-8

Generating Static C/C++ Libraries

Generating Static C/C++ Libraries
“Generate a C Static Library Using the Project Interface” on page 19-7
“Generate a C Static Library at the Command Line” on page 19-10

A-9

A Examples

Generating C/C++ Dynamic Libraries
“Generate a C Dynamically Linked Library (DLL) Using the Project
Interface” on page 19-11

A-10

Generating C/C++ Executables

Generating C/C++ Executables
“Generate a C Executable Using the Project Interface” on page 19-15
“Generate a C Executable at the Command Line” on page 19-17

A-11

A Examples

Specifying Inputs
“Specifying Properties of Primary Inputs by Example at the Command
Line” on page 19-45
“Specifying Properties of Primary Fixed-Point Inputs by Example at the
Command Line” on page 19-45
“Specifying a Structure as a Constant Input” on page 19-47
“Specifying a Variable-Size Vector Input” on page 19-49
“Specifying Class and Size of Scalar Structure” on page 19-59
“Specifying Class and Size of Structure Array” on page 19-60

A-12

Optimizing Generated Code

Optimizing Generated Code
“Limiting Copying the Body of a for-loop in Generated Code” on page 19-63
“Using Inlining in Control Flow Statements” on page 19-65
“Eliminate Redundant Copies of Function Inputs (A=foo(A))” on page 19-66
“Rewrite Logical Array Indexing as a Loop” on page 19-68

A-13

A Examples

Generating Code for Variable-Size Data
“Generate Code for a MATLAB Function That Expands a Vector in a Loop”
on page 19-103

A-14

Calling C/C++ Code from MATLAB Code

Calling C/C++ Code from MATLAB Code
“Call a C/C++ Static Library Function from MATLAB Code” on page 20-4

A-15

A Examples

A-16

Index

IndexA
arguments

limit on number for code generation from
MATLAB 13-19

C
C/C++ code generation for supported

functions 4-1
code files

packaging 19-194
porting 19-194

code generation from MATLAB
benefits of 2-2
best practices for working with variables 5-3
calling local functions 13-9
calling MATLAB functions 13-11
calling MATLAB functions using feval 13-16
characters 6-6
communications system toolbox System

objects 3-7
compilation directive %#codegen 13-8
computer vision system toolbox System

objects 3-2
converting mxArrays to known types 13-18
declaring MATLAB functions as extrinsic

functions 13-12
defining persistent variables 5-10
defining variables 5-2
defining variables by assignment 5-3
dsp system toolbox System objects 3-13
eliminating redundant copies of uninitialized

variables 5-7
how it resolves function calls 13-2
initializing persistent variables 5-10
limit on number of function arguments 13-19
pragma 13-8
resolving extrinsic function calls during

simulation 13-16

resolving extrinsic function calls in generated
code 13-17

rules for defining uninitialized variables 5-7
setting properties of indexed variables 5-6
supported toolbox functions 13-10
using type cast operators in variable

definitions 5-6
variables, complex 6-4
when not to use 2-2
when to use 2-2
which features to use 2-4
working with mxArrays 13-17

code generation readiness 17-4
code generation report keyboard shortcuts

codegen 19-191
codegen

code generation report keyboard
shortcuts 19-191

generating code for more than one entry-point
file 19-75

global data 19-81
coder.extrinsic 13-12
coder.nullcopy

uninitialized variables 5-7
comments in generated code

codegen 19-182
MATLAB Coder 19-88

communications system toolbox System objects
supported for code generation from

MATLAB 3-7
computer vision system toolbox System objects

supported for code generation from
MATLAB 3-2

configuration objects
codegen 19-29

controlling run-time checks
MATLAB Coder 21-21

cross-development
packaging files for 19-194

Index-1

Index

D
debugging run-time errors

MATLAB 18-10
defining uninitialized variables

rules 5-7
defining variables

for C/C++ code generation 5-3
design considerations

when writing MATLAB Code for code
generation 2-6 17-28

dsp system toolbox System objects
supported for code generation from

MATLAB 3-13

E
eliminating redundant copies of function

inputs 19-66 21-15
extrinsic functions 13-12

F
functions

limit on number of arguments for code
generation 13-19

Functions supported for C/C++ code
generation 4-1
alphabetical list 4-2
arithmetic operator functions 4-67
bit-wise operation functions 4-68
casting functions 4-68
Communications System Toolbox

functions 4-69
complex number functions 4-69
Computer Vision System Toolbox

functions 4-70
data type functions 4-71
derivative and integral functions 4-71
discrete math functions 4-72

error handling functions 4-72
exponential functions 4-72
filtering and convolution functions 4-73
Fixed-Point Toolbox functions 4-73
histogram functions 4-82
Image Processing Toolbox functions 4-82
input and output functions 4-83
interpolation and computational geometry

functions 4-83
linear algebra functions 4-83
logical operator functions 4-84
MATLAB Compiler functions 4-84
matrix/array functions 4-85
nonlinear numerical methods 4-89
polynomial functions 4-89
relational operator functions 4-89
rounding and remainder functions 4-90
set functions 4-90
signal processing functions 4-91
Signal Processing Toolbox functions 4-91
special value functions 4-96
specialized math functions 4-96
statistical functions 4-97
string functions 4-97
structure functions 4-98
trigonometric functions 4-98

Functions supported for MEX and C/C++ code
generation
categorized list 4-66

G
generating code for more than one entry-point file

codegen 19-75
generating traceable code

MATLAB Coder 19-88
global data

codegen 19-81

Index-2

Index

H
how to disable run-time checks

MATLAB Coder 21-22

I
indexed variables

setting properties for code generation from
MATLAB 5-6

initialization
persistent variables 5-10

M
MATLAB

debugging run-time errors 18-10
features not supported for code

generation 2-13
MATLAB code analyzer

using withMATLAB for code generation 17-4
MATLAB Coder

combining property specifications 19-58
controlling run-time checks 21-21
eliminating redundant copies of function

inputs 19-66 21-15
how to disable run-time checks 21-22
inlining functions 19-65 21-14
specifying build configuration

parameters 19-28
specifying general properties of primary

inputs 19-58
when to disable run-time checks 21-22

MATLAB for code generation
using the MATLAB code analyzer 17-4
variable types 5-18

MATLAB functions
and generating code for mxArrays 13-17

mxArrays
converting to known types 13-18
for code generation from MATLAB 13-17

O
optimizing generated code

unrolling for-loops 19-63 21-12

P
parfor-loops

break 21-29
broadcast variables 21-39
classification of variables 21-36
global variables 21-29
nested loops 21-29
persistent variables 21-29
reduction assignments 21-40
reduction assignments, associativity 21-44
reduction assignments, commutativity 21-44
reduction variables 21-39
return 21-29
sliced variables 21-37
temporary variables 21-45

persistent variables
defining for code generation from

MATLAB 5-10
initializing for code generation from

MATLAB 5-10

R
readability

codegen 19-182
MATLAB Coder 19-88

S
signal processing functions

for C/C++ code generation 4-91
specifying build configuration parameters

codegen 19-29
MATLAB Coder 19-28

Index-3

Index

T
traceability

codegen 19-182
MATLAB Coder 19-88

type cast operators
using in variable definitions 5-6

U
uninitialized variables

eliminating redundant copies in generated
code 5-7

V
validating code

codegen 19-182

MATLAB Coder 19-88
variable types supported for code generation

from MATLAB 5-18
variables

eliminating redundant copies in C/C++ code
generated from MATLAB 5-7

Variables
defining by assignment for code generation

from MATLAB 5-3
defining for code generation from

MATLAB 5-2

W
when to disable run-time checks

MATLAB Coder 21-22

Index-4

	toc
	Check Bug Reports for Issues and Fixes
	About MATLAB Coder
	Product Description
	Key Features

	Product Overview
	When to Use MATLAB Coder
	Code Generation for Embedded Software Applications
	Code Generation for Fixed-Point Algorithms

	Code Generation Workflow
	See Also

	Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
	When Not to Generate Code from MATLAB Algorithms

	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
	See Also

	Expected Differences in Behavior After Compiling MATLAB Code
	Why Are There Differences?
	Character Size
	Order of Evaluation in Expressions
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Size of Empty Arrays
	Floating-Point Numerical Results
	When computer hardware uses extended precision registers
	For certain advanced library functions
	For implementation of BLAS library functions
	NaN and Infinity Patterns
	Code Generation Target
	MATLAB Class Initial Values
	Variable-Size Support for Code Generation

	MATLAB Language Features Supported for C/C++ Code Generation
	MATLAB Language Features Not Supported for C/C++ Code Generation

	System Objects Supported for Code Generation
	System Objects Supported for Code Generation
	Code Generation for System Objects
	Computer Vision System Toolbox System Objects
	Communications System Toolbox System Objects
	DSP System Toolbox System Objects

	Functions Supported for Code Generation
	Functions Supported for Code Generation — Alphabetical List
	Functions Supported for Code Generation — Categorical List
	Aerospace Toolbox Functions
	Arithmetic Operator Functions
	Bit-Wise Operation Functions
	Casting Functions
	Communications System Toolbox Functions
	Complex Number Functions
	Computer Vision System Toolbox Functions
	Data Type Functions
	Derivative and Integral Functions
	Discrete Math Functions
	Error Handling Functions
	Exponential Functions
	Filtering and Convolution Functions
	Fixed-Point Toolbox Functions
	Histogram Functions
	Image Processing Toolbox Functions
	Input and Output Functions
	Interpolation and Computational Geometry
	Linear Algebra
	Logical Operator Functions
	MATLAB Compiler Functions
	Matrix and Array Functions
	Nonlinear Numerical Methods
	Polynomial Functions
	Relational Operator Functions
	Rounding and Remainder Functions
	Set Functions
	Signal Processing Functions in MATLAB
	Signal Processing Toolbox Functions
	Special Values
	Specialized Math
	Statistical Functions
	String Functions
	Structure Functions
	Trigonometric Functions

	Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Defining a Variable for Multiple Execution Paths
	Defining All Fields in a Structure
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables

	Eliminate Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Vari
	What happens if you access uninitialized data?
	Defining Uninitialized Variables

	Reassignment of Variable Properties
	Dynamically sized variables
	Variables reused in the code for different purposes
	Define and Initialize Persistent Variables
	Reuse the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Variable Reuse in an if Statement
	Limitations of Variable Reuse

	Avoid Overflows in for-Loops
	Supported Variable Types

	Defining Data for Code Generation
	Data Definition for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Expressions Containing Complex Operands Yield Complex Results

	Code Generation for Characters

	Code Generation for Variable-Size Data
	What Is Variable-Size Data?
	Variable-Size Data Definition for Code Generation
	Bounded Versus Unbounded Variable-Size Data
	Control Memory Allocation of Variable-Size Data
	Specify Variable-Size Data Without Dynamic Memory Allocation
	Fixing Upper Bounds Errors
	Specifying Upper Bounds for Variable-Size Data
	When to Specify Upper Bounds for Variable-Size Data
	Specifying Upper Bounds on the Command Line for Variable-Size In
	Specifying Unknown Upper Bounds for Variable-Size Inputs
	Specifying Upper Bounds for Local Variable-Size Data
	Using a Matrix Constructor with Nonconstant Dimensions

	Variable-Size Data in Code Generation Reports
	What Reports Tell You About Size
	How Size Appears in Code Generation Reports
	How to Generate a Code Generation Report

	Define Variable-Size Data for Code Generation
	When to Define Variable-Size Data Explicitly
	Using a Matrix Constructor with Nonconstant Dimensions
	Inferring Variable Size from Multiple Assignments
	Inferring Upper Bounds from Multiple Definitions with Different

	Defining Variable-Size Data Explicitly Using coder.varsize
	Specifying Which Dimensions Vary
	Allowing a Variable to Grow After Defining Fixed Dimensions
	Defining Variable-Size Matrices with Singleton Dimensions
	Defining Variable-Size Structure Fields

	C Code Interface for Arrays
	C Code Interface for Statically Allocated Arrays
	C Code Interface for Dynamically Allocated Arrays
	emxArray Structure Definition
	C Code Interface for Structure Fields

	Utility Functions for Creating emxArray Data Structures

	Troubleshooting Issues with Variable-Size Data
	Diagnosing and Fixing Size Mismatch Errors
	Assigning Variable-Size Matrices to Fixed-Size Matrices
	Empty Matrix Reshaped to Match Variable-Size Specification
	Performing Binary Operations on Fixed and Variable-Size Operands
	Diagnosing and Fixing Errors in Detecting Upper Bounds
	Using Nonconstant Dimensions in a Matrix Constructor

	Incompatibilities with MATLAB in Variable-Size Support for Code
	Incompatibility with MATLAB for Scalar Expansion
	Workaround

	Incompatibility with MATLAB in Determining Size of Variable-Size
	Workarounds

	Incompatibility with MATLAB in Determining Size of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Vector-Vector Indexing
	Workaround

	Incompatibility with MATLAB in Matrix Indexing Operations for Co
	Dynamic Memory Allocation Not Supported for MATLAB Function Bloc

	Restrictions on Variable Sizing in Toolbox Functions Supported f
	Common Restrictions
	Variable-length vector restriction
	Automatic dimension restriction
	Array-to-vector restriction
	Array-to-scalar restriction

	Toolbox Functions with Variable Sizing Restrictions

	Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
	Restrictions When Using struct
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Define Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Fi
	Defining an Array of Structures Using Concatenation

	Make Structures Persistent
	Index Substructures and Fields
	Reference substructure field values individually using dot notat
	Reference field values individually in structure arrays
	Do not reference fields dynamically
	Assign Values to Structures and Fields
	Field properties must be consistent across structure-to-structur
	Do not use field values as constants
	Do not assign mxArrays to structures
	Pass Large Structures as Input Parameters

	Code Generation for Enumerated Data
	Enumerated Data Definition for Code Generation
	Enumerated Types Supported for Code Generation
	Enumerated Type Based on int32
	Syntax
	Example
	How to Use

	When to Use Enumerated Data for Code Generation
	Generate Code for Enumerated Data from MATLAB Algorithms
	How to Generate Code for Enumerated Data

	Define Enumerated Data for Code Generation
	Naming Enumerated Types for Code Generation

	Instantiate Enumerated Types for Code Generation
	Operations on Enumerated Data Allowed for Code Generation
	Assignment Operator, =
	Relational Operators, < > <= >= == ~=
	Cast Operation
	Indexing Operation
	Control Flow Statements: if, switch, while

	Include Enumerated Data in Control Flow Statements
	if Statement with Enumerated Data Types
	Class Definition: sysMode
	Class Definition: LEDcolor
	MATLAB Function: displayState
	Build and Test a MEX Function for displayState

	switch Statement with Enumerated Data Types
	Class Definition: VCRState
	Class Definition: VCRButton
	MATLAB Function: VCR
	Build and Test a MEX Function for VCR

	while Statement with Enumerated Data Types
	Class Definition: State
	MATLAB Function: Setup
	Build and Test a MEX Executable for Setup

	Customize Enumerated Types Based on int32
	About Customizing Enumerated Types
	Specify a Default Enumerated Value
	Specify a Header File

	Control Names of Enumerated Type Values in Generated Code
	Change and Reload Enumerated Data Types
	Restrictions on Use of Enumerated Data in for-Loops
	Do not use enumerated data as the loop counter variable in for-
	Toolbox Functions That Support Enumerated Types for Code Generat

	Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
	Language Limitations
	Code Generation Features Not Compatible with Classes
	Defining Class Properties for Code Generation
	Calls to Base Class Constructor

	Classes That Support Code Generation
	Memory Allocation Requirements
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	MATLAB Classes in Code Generation Reports
	What Reports Tell You About Classes
	How Classes Appear in Code Generation Reports
	In the MATLAB Code Tab
	In the Variables Tab
	In the Call Stack

	How to Generate a Code Generation Report

	Troubleshooting Issues with MATLAB Classes
	Class class does not have a property with name name
	Workaround

	Code Generation for Function Handles
	Function Handles Definition for Code Generation
	Define and Pass Function Handles for Code Generation
	Function Handle Limitations for Code Generation
	Function handles must be scalar values.
	You cannot use the same bound variable to reference different fu
	You cannot pass function handles to or from extrinsic functions.
	You cannot pass function handles to or from primary functions.
	You cannot view function handles from the debugger

	Defining Functions for Code Generation
	Specify Variable Numbers of Arguments
	Supported Index Expressions
	Apply Operations to a Variable Number of Arguments
	When to Force Loop Unrolling
	Using Variable Numbers of Arguments in a for-Loop
	Key Points About the Example

	Implement Wrapper Functions
	Passing Variable Numbers of Arguments from One Function to Anoth
	Key Points About the Example

	Pass Property/Value Pairs
	Variable Length Argument Lists for Code Generation
	Do not use varargin or varargout in top-level functions
	Use curly braces {} to index into the argument list
	Verify that indices can be computed at compile time
	Do not write to varargin

	Calling Functions for Code Generation
	Resolution of Function Calls in MATLAB Generated Code
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	Resolution of Files Types on Code Generation Path
	Compilation Directive %#codegen
	Call Local Functions
	Call Supported Toolbox Functions
	Call MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Declaring Extrinsic Functions
	When to Use the coder.extrinsic Construct
	Rules for Extrinsic Function Declarations
	Scope of Extrinsic Function Declarations

	Calling MATLAB Functions Using feval
	How MATLAB Resolves Extrinsic Functions During Simulation
	Working with mxArrays
	Converting mxArrays to Known Types

	Restrictions on Extrinsic Functions for Code Generation
	Limit on Function Arguments

	Fixed-Point Conversion
	Propose Fixed-Point Data Types
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	About the fun_with_matlab_test Script
	Contents of fun_with_matlab_test
	Define Input Types
	Build Instrumented MEX Function
	View Data Type Proposal Settings
	Run Simulation
	View Code Generation Report
	Next Steps
	Apply Fixed-Point Data Types
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_fi Function
	Create and set up a MATLAB Coder Project
	Define Input Types
	The fun_with_fi_test Script
	Run Simulation
	Workflow for Proposing Data Types in a MATLAB Coder Project
	Proposing Fraction Lengths
	Proposing Word Lengths
	Modify Data Type Proposal Settings
	Modify Instrumentation Report Settings
	View Data Type Proposals
	View Simulation Minimum and Maximum Values
	Merging Instrumentation Results
	Clearing Instrumentation Results
	Redirecting Entry-Point Calls to MEX Function

	Bug Reports
	Check Bug Reports for Issues and Fixes

	Setting Up a MATLAB Coder Project
	MATLAB Coder Project Set Up Workflow
	Creating a New Project
	From the MATLAB APPS Tab
	At the Command Line
	From a MATLAB Coder Project

	Opening an Existing Project
	From the MATLAB APPS Tab
	At the Command Line
	From a MATLAB Coder Project

	Adding Files to the Project
	Specifying Properties of Primary Function Inputs in a Project
	Why You Must Specify Input Properties
	See Also

	How to Specify an Input Definition in a Project

	Autodefine Input Types
	How MATLAB Coder Autodefines Input Types
	Prerequisites for Autodefining Input Types
	How to Autodefine Input Types

	Define Input Parameters by Example in a Project
	How to Define an Input Parameter by Example
	Specifying Input Parameters by Example
	Specifying an Enumerated Type Input Parameter by Example
	Specifying a Fixed-Point Input Parameter by Example

	Define or Edit Input Parameter Type in a Project
	How to Define or Edit an Input Parameter Type
	Specifying an Enumerated Type Input Parameter by Type
	Specifying a Fixed-Point Input Parameter by Type
	Specifying Structures
	Specifying Structures by Type
	How to Set Structure Properties
	How to Rename a Field in a Structure
	How to Add a Field to a Structure
	How to Insert a Field into a Structure
	How to Remove a Field from a Structure

	Define Constant Input Parameters in a Project
	Define Inputs Programmatically in the MATLAB File
	Adding Global Variables in a Project
	Specifying Global Variable Type and Initial Value in a Project
	Why Specify a Type Definition for Global Variables?
	How to Specify a Global Variable Type
	Defining a Global Variable by Example
	Defining or Editing Global Variable Type
	Defining Global Variable Initial Value
	Define Initial Value Before Defining Type
	Define Initial Value After Defining Type

	Removing Global Variables

	Specify Output File Name
	Command Line Alternative

	Specify Output File Locations
	Command Line Alternative

	Selecting Output Type
	Command Line Alternative
	Changing Output Type
	Check These MATLAB Coder Project Parameters When Changing Output
	Check These Command-Line Parameters When Changing Output Type

	Preparing MATLAB Code for C/C++ Code Generation
	Workflow for Preparing MATLAB Code for Code Generation
	See Also

	Fixing Errors Detected at Design Time
	See Also

	Using the Code Analyzer
	Check Code With the Code Analyzer
	Check Code Using the Code Generation Readiness Tool
	Run Code Generation Readiness Tool at the Command Line
	Run Code Generation Readiness Tool from the Current Folder Brows
	Run the Code Generation Readiness Tool in a Project
	See Also

	Code Generation Readiness Tool
	What Information Does the Code Generation Readiness Tool Provide
	Summary Tab
	Code Structure Tab
	Code Distribution
	Call Tree

	See Also

	Unable to Determine Code Generation Readiness
	Generate MEX Functions Using the MATLAB Coder Project Interface
	Project Workflow for Generating MEX Functions
	Generate MEX Functions Using the Project Interface
	Configure Project Settings
	See Also

	Build a MATLAB Coder Project
	Viewing Build Results
	Saving Build Results
	See Also

	See Also

	Generate MEX Functions at the Command Line
	Command-line Workflow for Generating MEX Functions
	Generate MEX Functions at the Command Line
	Generating MEX Functions at the Command Line Using codegen
	See Also

	Fix Errors Detected at Code Generation Time
	See Also

	Design Considerations When Writing MATLAB Code for Code Generati
	See Also

	Running MEX Functions
	Debugging MEX Functions

	Debugging Strategies

	Testing MEX Functions in MATLAB
	Workflow for Testing MEX Functions in MATLAB
	See Also

	Why Test MEX Functions in MATLAB?
	Running MEX Functions
	Debugging MEX Functions

	Verify MEX Functions in a Project
	Using Test Files That Call Only MATLAB Functions
	Using Test Files That Call MEX Functions

	Verify MEX Functions at the Command Line
	Debug Run-Time Errors
	Viewing Errors in the Run-Time Stack
	About the Run-Time Stack
	When to Use the Run-Time Stack

	Handling Run-Time Errors

	Generating C/C++ Code from MATLAB Code
	Code Generation Workflow
	See Also

	C/C++ Code Generation
	Specify Custom Files to Build

	Generating C/C++ Static Libraries from MATLAB Code
	Generate a C Static Library Using the Project Interface
	Generate a C Static Library at the Command Line

	Generating C/C++ Dynamically Linked Libraries from MATLAB Code
	Dynamic Libraries Generated by MATLAB Coder
	Generate a C Dynamically Linked Library (DLL) Using the Project
	Generate a C Dynamic Library at the Command Line

	Generating Standalone C/C++ Executables from MATLAB Code
	Generate a C Executable Using the Project Interface
	See Also

	Generate a C Executable at the Command Line
	Specifying main Functions for C/C++ Executables
	Specify main Functions
	Specifying main Functions in the Project Settings Dialog Box
	Specifying main Functions at the Command Line

	Build Setting Configuration
	Specify Output Type
	Output Types
	Location of Generated Files
	Specifying the Output Type Using the MATLAB Coder Project Interf
	Specifying the Output Type at the Command Line

	Specify a Language for Code Generation
	Specifying a Language for Code Generation in the Project Setting
	Specifying a Language for Code Generation at the Command Line

	Specify Output File Name
	Specifying Output File Name in a Project
	Command Line Alternative

	Specify Output File Locations
	Specifying Output File Location in a Project
	Command Line Alternative

	Parameter Specification Methods
	Specify Build Configuration Parameters
	Specifying Build Configuration Parameters in the Project Setting
	Specifying Build Configuration Parameters at the Command Line Us
	Save a configuration object to a MAT-file and then load the MAT-
	Write a script that creates the configuration object and sets it

	Specifying Build Configuration Parameters at the Command Line Us

	Share Build Configuration Settings
	Export Settings
	Import Settings
	See Also

	Primary Function Input Specification
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Define Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for Using the -args Option
	Specifying Properties of Primary Inputs by Example at the Comman
	Specifying Properties of Primary Fixed-Point Inputs by Example a

	Specify Constant Inputs at the Command Line
	Calling Functions with Constant Inputs
	Specifying a Structure as a Constant Input

	Specify Variable-Size Inputs at the Command Line
	Specifying a Variable-Size Vector Input

	Define Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Fixed Size
	Specify Scalar Size
	Specify Upper Bounds for Variable-Size Inputs
	Specify Inputs with Fixed- and Variable-Size Dimensions
	Specify Size of Individual Dimensions
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Specifying General Properties of Primary Inputs
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	Speed Up Compilation
	Generate Code Only
	In the Project Interface
	At the Command Line

	Disable Compiler Optimization
	In the Project Interface
	At the Command Line

	Code Optimization
	Unroll for-loops
	Limiting Copying the Body of a for-loop in Generated Code

	Inline Code
	Preventing Function Inlining
	Using Inlining in Control Flow Statements

	Eliminate Redundant Copies of Function Inputs (A=foo(A))
	Rewrite Logical Array Indexing as a Loop

	Paths and File Infrastructure Setup
	Compile Path Search Order
	Specifying Folders to Search for Custom Code
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Generate Code for Multiple Entry-Point Functions
	Advantages of Generating Code for More Than One Entry-Point Func
	Generating Code for More Than One Entry-Point Function Using the
	Generating a MEX Function with Two Entry-Point Functions Using t
	Generating a C Static Library with Two Entry-Point Functions Usi
	Generating Code for More Than One Entry-Point Function at the Co
	Generating a MEX Function with Two Entry-Point Functions at the
	Generating a C/C++ Static Library with Two Entry-Point Functions
	How to Call an Entry-Point Function in a MEX Function
	Calling an Entry-Point Function in a MEX Function
	How to Call an Entry-Point Function in a C/C++ Library Function

	Generate Code for Global Data
	Workflow
	Declare Global Variables
	Define Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data in a MATLAB Coder Project
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Generation of Traceable Code
	About Code Traceability
	Generate Traceable Code
	In the Project Settings Dialog Box
	At the Command Line

	Format of Traceability Tags
	Location of Comments in Generated Code
	Straight-Line Source Code
	If Statements
	For Statements
	While Statements
	Switch Statements

	Traceability Limitations

	Generate Code for Enumerated Types
	Generate Code for Variable-Size Data
	Disable Support for Variable-Size Data
	In the Project Settings Dialog Box
	At the Command Line

	Control Dynamic Memory Allocation
	In the Project Settings Dialog Box
	At the Command Line

	Generating Code for MATLAB Functions with Variable-Size Data
	Generate Code for a MATLAB Function That Expands a Vector in a L
	About the MATLAB Function uniquetol
	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Generate C Code
	Step 6: Change the Dynamic Memory Allocation Threshold

	Using Dynamic Memory Allocation for an "Atoms" Simulation
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_atoms' Function
	Set Up Code Generation Options
	Set Up Example Inputs
	Generate a MEX Function for Testing
	Run the MEX Function
	Run the MEX Function Again
	Generate a Standalone C Code Library
	Inspect Generated Code
	Write a C Main Function
	Create a Configuration Object for Executables
	Generate a Standalone Executable
	Run the Executable
	Fetch the State
	Render the State
	Clean Up
	Run Command: Cleanup

	Code Generation for MATLAB Classes
	How MATLAB Coder Partitions Generated Code
	Partitioning Generated Files
	How to Select the File Partitioning Method
	In the Project Settings Dialog Box
	At the Command Line

	Partitioning Generated Files with One C/C++ File Per MATLAB File
	How MATLAB Coder Partitions Entry-Point MATLAB Functions
	How MATLAB Coder Partitions Local Functions
	How MATLAB Coder Partitions Overloaded Functions

	Generated Files and Locations
	Generated Files for MEX Targets
	Generated Files for C/C++ Static Library Targets
	Generated Files for C/C++ Dynamic Library Targets
	Generated Files for C/C++ Executable Targets
	Changing Names and Locations of Generated Files

	File Partitioning and Inlining
	Tradeoffs Between File Partitioning and Inlining
	How Disabling Inlining Affects File Partitioning
	Correlating C/C++ Code with Inlined Functions
	Modifying the Inlining Threshold

	Customize the Post-Code-Generation Build Process
	Workflow for Customizing Post-Code-Generation Builds
	Build Information Object
	Build Information Functions
	addCompileFlags
	addDefines
	addIncludeFiles
	addIncludePaths
	addLinkFlags
	addLinkObjects
	addNonBuildFiles
	addSourceFiles
	addSourcePaths
	addTMFTokens
	findIncludeFiles
	getCompileFlags
	getDefines
	getFullFileList
	getIncludeFiles
	getIncludePaths
	getLinkFlags
	getNonBuildFiles
	getSourceFiles
	getSourcePaths
	packNGo
	updateFilePathsAndExtensions
	updateFileSeparator

	Programming a Post-Code-Generation Command
	Using a Post-Code-Generation Command in Your Build
	Including a Post-Code-Generation Command in the Project Settings
	Including a Post-Code-Generation Command at the Command Line
	Programming the Post-Code-Generation Command as a Script
	Programming the Post-Code-Generation Command as a Function

	Programming and Using a Post-Code-Generation Command at the Comm

	Code Generation Reports
	About Code Generation Reports
	Report Generation
	Names and Locations of Code Generation Reports
	Opening Code Generation Reports
	Description of Code Generation Reports

	Enable Code Generation Reports
	How to Enable Code Generation Reports in the Project Settings Di
	How to Enable Code Generation Reports at the Command Line

	View Your MATLAB Code in a Report
	Viewing Local Functions
	Viewing Specializations
	Viewing Extrinsic Functions

	Viewing Call Stack Information
	Viewing Call Stack Information on the Call stack Tab
	Viewing Call Sites in the Callers List

	View Generated C/C++ Code in a Report
	Tracing Generated Code Back to MATLAB Source Code
	Navigating to C/C++ Code Source Files
	Viewing Type Definitions
	Viewing Custom Code

	Viewing the Build Summary Information
	View Error and Warning Messages in a Report
	Viewing Errors and Warnings in the All Messages Tab
	Viewing Error and Warning Information in Your MATLAB Code
	Viewing Compilation and Linking Errors and Warnings

	Viewing Variables in Your MATLAB Code
	Viewing Variables in the Variables Tab
	Viewing Information About Variables and Expressions in Your MATL

	Viewing Target Build Information
	Keyboard Shortcuts for the Code Generation Report
	Report Limitations
	varargin and varargout
	Loop Unrolling
	Dead Code
	Structures
	Column Headings on Variables Tab
	Multiline Matrices

	Troubleshooting
	Run-time Stack Overflow

	Package Code For Use in Another Development Environment
	When to Package Code
	Package Generated Code in a Project
	Package Generated Code at the Command Line
	Choose a Structure for the Zip File

	Deploying Generated Code
	Call a C Static Library Function from C Code
	Call a C/C++ Static Library Function from MATLAB Code
	Call Generated C/C++ Functions
	Conventions for Calling Functions in Generated Code
	How to Call C/C++ Functions from MATLAB Code
	Calling Initialize and Terminate Functions
	Calling C/C++ Functions with Multiple Outputs
	See Also

	Calling C/C++ Functions that Return Arrays
	See Also

	Use a MATLAB Coder Dynamic Library in a Simple Microsoft Visual
	Custom C/C++ Code Integration
	About Custom C/C++ Code Integration with MATLAB Coder
	Specifying Custom C/C++ Files in the Project Settings Dialog Box
	Specifying Custom C/C++ Files at the Command Line
	Specifying Custom C/C++ Files with Configuration Objects
	See Also

	Accelerating MATLAB Algorithms
	Workflow for Accelerating MATLAB Algorithms
	See Also

	Edge Detection on Images
	Prerequisites
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'sobel' Function
	Generate the MEX Function
	Read in the Original Image
	Convert Image to a Grayscale Version
	Run the MEX Function (The Sobel Filter)
	Display the Result
	Generate Standalone C Code
	Inspect the Generated Function
	Cleanup
	Run Command: Cleanup
	Accelerate MATLAB Algorithms
	Modifying MATLAB Code for Acceleration
	How to Modify Your MATLAB Code for Acceleration
	Unroll for-loops
	Limiting Copying the Body of a for-loop in Generated Code

	Inline Code
	Preventing Function Inlining
	Using Inlining in Control Flow Statements

	Eliminate Redundant Copies of Function Inputs (A=foo(A))

	Accelerate MATLAB Algorithms with the Basic Linear Algebra Subpr
	How MATLAB Uses the BLAS Library for MEX Code Generation
	How to Use the BLAS Library for C/C++ Code Generation
	When to Disable BLAS Library Support
	How to Disable BLAS Library Support
	Disabling BLAS Library Support in the Project Settings Dialog Bo
	Disabling BLAS Library Support at the Command Line

	Supported Compilers

	Control Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks
	Disabling Run-Time Checks in the Project Settings Dialog Box
	Disabling Run-Time Checks From the Command Line

	Acceleration of MATLAB Algorithms Using Parallel for-loops (parf
	Parallel for-loops (parfor) in MEX Functions
	How parfor-loops Improve Performance

	When to Use parfor-loops
	Many Iterations of a Simple Calculation
	Loop Iterations Take a Long Time to Execute

	When Not to Use parfor-loops
	Loop Iterations Are Dependent
	Small Number of Simple Calculations
	Results Depend on Order of Evaluation of Loop Parameters

	Control Compilation of parfor-loops
	When to Disable parfor

	Supported Compilers
	parfor-Loop Syntax and Restrictions
	parfor Syntax
	What Is Allowed in a parfor-loop

	parfor Limitations
	Nested parfor-Loops
	Break and Return Statements
	Global and Persistent Variables
	Scalar Reduction Variables
	Unsupported Reduction Functions
	MATLAB Classes
	Calls to External C Code
	Extrinsic Calls
	rand Functions
	Concatenations
	Integrating Custom Code
	Inlining Code
	Unrolling Code
	varargin/varargout

	Reduction Assignments in parfor-loops
	Scalar Reduction Variables
	Multiple Reductions in a parfor-loop

	Classification of Variables in parfor-loops
	Overview
	Sliced Variables
	Characteristics of a Sliced Variable

	Broadcast Variables
	Reduction Variables
	Rules for Reduction Variables
	Reduction Assignments, Associativity, and Commutativity of Reduc

	Temporary Variables
	Uninitialized Temporaries

	Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor
	Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor
	Troubleshooting parfor-loops
	What Causes Errors About the Use of Global Structures in Paralle
	Compiler Does Not Support OpenMP

	Accelerating Simulation of Bouncing Balls
	Prerequisites
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_balls' Function
	Generate the MEX Function
	Compare Results
	Clean Up
	Run Command: Cleanup

	Calling C/C++ Functions from Generated Code
	MATLAB Coder Interface to C/C++ Code
	How to Call C/C++ Code from Generated Code
	Why Call C/C++ Functions from Generated Code?
	Call External C/C++ Functions
	Pass Arguments by Reference to External C/C++ Functions
	Manipulate C Data
	Declaring Opaque Data

	Call External C/C++ Functions
	Workflow for Calling External C/C++ Functions
	Best Practices for Calling C/C++ Code from Generated Code

	Return Multiple Values from C Functions
	How MATLAB Coder Infers C/C++ Data Types
	Mapping MATLAB Types to C/C++
	Mapping embedded.numerictypes to C/C++
	Mapping Arrays to C/C++
	Mapping Complex Values to C/C++
	Mapping Structures to C/C++ Structures
	Mapping Strings to C/C++
	Mapping Multiword Types to C/C++

	Examples
	Data Management
	Code Generation for Variable-Size Data
	Code Generation for Structures
	Code Generation for Enumerated Data
	Code Generation for Function Handles
	Using Variable-Length Argument Lists
	Generating MEX Functions
	Generating Static C/C++ Libraries
	Generating C/C++ Dynamic Libraries
	Generating C/C++ Executables
	Specifying Inputs
	Optimizing Generated Code
	Generating Code for Variable-Size Data
	Calling C/C++ Code from MATLAB Code

	Index

	tables
	Supported Computer Vision System Toolbox System Objects
	Supported Communications System Toolbox System Objects
	Supported DSP System Toolbox System Objects
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specify properties for each field according to its class
	Global Data Synchronization Options

